
Техника науки и технические науки
Согласно третьей, указанной выше, точке зрения, наука развивалась, ориентируясь на развитие технических аппаратов и инструментов, и представляет собой ряд попыток исследовать способ функционирования этих инструментов. Германский философ Гернот Беме приводит в качестве примера теорию магнита английского ученого Вильяма Гильберта, которая базировалась на использовании компаса. Аналогичным образом можно рассмотреть и возникновение термодинамики на основе технического развития парового двигателя. Другими примерами являются открытие Галилея и Торичелли, к которым они были приведены практикой инженеров, строивших водяные насосы. По мнению Беме, техника ни в коем случае не является применением научных законов, скорее, в технике идет речь о моделировании природы сообразно социальным функциям. "И если говорят, что наука является базисом технологии, то можно точно также сказать, что технология дает основу наукеѕ... Существует исходное единство науки и технологии Нового времени, которое имеет свой источник в эпохе Ренессанса. Тогда механика впервые выступила как наука, как исследование природы в технических условиях (эксперимента) и с помощью технических моделей (например, часов и т.п.)". Это утверждение отчасти верно, поскольку прогресс науки зависел в значительной степени от изобретения соответствующих научных инструментов. Причем многие технические изобретения были сделаны до возникновения экспериментального естествознания, например, телескоп и микроскоп, а также можно утверждать, что без всякой помощи науки были реализованы крупные архитектурные проекты. Без сомнения, прогресс техники сильно ускоряется наукой; верно также и то, что "чистая" наука пользуется техникой, т.е. инструментами, а наука была дальнейшим расширением техники. Но это еще не означает, что развитие науки определяется развитием техники. К современной науке, скорее, применимо противоположное утверждение. Четвертая точка зрения оспаривает предыдущую, утверждая, что техника науки, т.е. измерение и эксперимент, во все времена обгоняет технику повседневной жизни. Этой точки зрения придерживался, например, А. Койре, который оспаривал тезис, что наука Галилея представляет собой не что иное, как продукт деятельности ремесленника или инженера. Он подчеркивал, что Галилей и Декарт никогда не были людьми ремесленных или механических искусств и не создали ничего, кроме мыслительных конструкций. Не Галилей учился у ремесленников на венецианских верфях, напротив, он научил их многому. Он был первым, кто создал первые действительно точные научные инструменты - телескоп и маятник, которые были результатом физической теории. При создании своего собственного телескопа Галилей не просто усовершенствовал голландскую подзорную трубу, а исходил из оптической теории, стремясь сделать невидимое наблюдаемым, из математического расчета, стремясь достичь точности в наблюдениях и измерениях. Измерительные инструменты, которыми пользовались его предшественники, были по сравнению с приборами Галилея еще ремесленными орудиями. Новая наука заменила расплывчатые и качественные понятия аристотелевской физики системой надежных и строго количественных понятий. Заслуга великого ученого в том, что он заменил обыкновенный опыт основанным на математике и технически совершенным экспериментом. Декартовская и галилеевская наука имела огромное значение для техников и инженеров. То, что на смену миру "приблизительности" и "почти" в создании ремесленниками различных технических сооружений и машин приходит мир новой науки - мир точности и расчета, - заслуга не инженеров и техников, а теоретиков и философов. Примерно такую же точку зрения высказывал Луис Мэмфорд: "Сначала инициатива исходила не от инженеров-изобретателей, а от ученыхѕ... Телеграф, в сущности, открыл Генри, а не Морзе; динамо - Фарадей, а не Сименс; электромотор - Эрстед, а не Якоби; радиотелеграф - Максвелл и Герц, а не Маркони и Де Форестѕ..." Преобразование научных знаний в практические инструменты, с точки зрения Мэмфорда, было простым эпизодом в процессе открытия. Из этого выросло новое явление: обдуманное и систематическое изобретение. Например, телефон на большие дистанции стал возможен только благодаря систематическим исследованиям в лабораториях Белла. Эта точка зрения также является односторонней. Хорошо известно, что ни Максвелл, ни Герц не имели в виду технических приложений развитой ими электромагнитной теории. Герц ставил естественнонаучные эксперименты, подтвердившие теорию Максвелла, а не конструировал радиоприемную или радиопередающую аппаратуру, изобретенную позже. Потребовались еще значительные усилия многих ученых и инженеров, прежде чем подобная аппаратура приобрела современный вид. Верно, однако, что эта работа была связана с серьезными систематическими научными (точнее, научно-техническими) исследованиями. В то же время технологические инновации вовсе не обязательно являются результатом движения, начинающегося с научного открытия. По нашему мнению, наиболее реалистической и исторически обоснованной точкой зрения является та, которая утверждает, что вплоть до конца XIX века регулярного применения научных знаний в технической практике не было, но это характерно для технических наук сегодня. В течение XIX века отношения науки и техники частично переворачиваются в связи со "сциентификацией" техники. Этот переход к научной технике не был, однако, однонаправленной трансформацией техники наукой, а их взаимосвязанной модификацией. Другими словами, "сциентизация техники" сопровождалась "технизацией науки". Техника большую часть своей истории была мало связана с наукой; люди могли делать и делали устройства, не понимая, почему они так работают. В то же время естествознание до XIX века решало в основном свои собственные задачи, хотя часто отталкивалось от техники. Инженеры, провозглашая ориентацию на науку, в своей непосредственной практической деятельности руководствовались ею незначительно. После многих веков такой "автономии" наука и техника соединились в XVII веке, в начале научной революции. Однако лишь к XIX веку это единство приносит свои первые плоды, и только в XX веке наука становится главным источником новых видов техники и технологии. В первый период (донаучный) последовательно формируются три типа технических знаний: практико-методические, технологические и конструктивно-технические. Во втором периоде происходит зарождение технических наук (со второй половины XVIII в. до 70-х гг. XIX в.) происходит, во-первых, формирование научно-технических знаний на основе использования в инженерной практике знаний естественных наук и, во-вторых, появление первых технических наук. Этот процесс в новых областях практики и науки происходит, конечно, и сегодня, однако, первые образцы такого способа формирования научно-технических знаний относятся именно к данному периоду. Третий период - классический (до середины XIX века) характеризуется построением ряда фундаментальных технических теорий. Наконец, для четвертого этапа (настоящее время) характерно осуществление комплексных исследований, интеграция технических наук не только с естественными, но и с общественными науками, и вместе с тем происходит процесс дальнейшей дифференциации и "отпочкования" технических наук от естественных и общественных. Однако для проведения методологического анализа технического знания недостаточна простая эмпирическая констатация определенных исторических этапов. Необходимо дать теоретическое описание функционирования и генезиса технических наук. А для этого важно определить их специфику.
Специфика естественных и технических наук
Выявление специфики технических наук осуществляется обычно следующим образом: технические науки сопоставляются с естественными (и общественными) науками и параллельно рассматривается соотношение фундаментальных и прикладных исследований. При этом могут быть выделены следующие позиции: (1) технические науки отождествляются с прикладным естествознанием; (2) естественные и технические науки рассматриваются как равноправные научные дисциплины; (3) в технических науках выделяются как фундаментальные, так и прикладные исследования.
Технические науки и прикладное естествознание
Технические науки нередко отождествляются с прикладным естествознанием. Однако в условиях современного научно-технического развития такое отождествление не соответствует действительности. Технические науки составляют особый класс научных (научно-технических) дисциплин, отличающихся от естественных, хотя между ними существует достаточно тесная связь. Технические науки возникали в качестве прикладных областей исследования естественных наук, используя, но и значительно видоизменяя заимствованные теоретические схемы, развивая исходное знание. Кроме того, это не был единственный способ их возникновения. Важную роль сыграла здесь математика. Нет оснований также считать одни науки более важными и значимыми, чем другие, особенно если нет ясности, что принять за точку отсчета. По мнению Дж. Агасси, разделение науки на фундаментальную и прикладную по результатам исследования слишком тривиально. "Существует, конечно, пересечение, - писал он. - То исследование, которое известно как фундаментальное и которое является чистой наукой в ближайший отрезок времени, в конце концов применяется. Иными словами, фундаментальное исследование - это поиск некоторых законов природы с учетом использования этих законов". Это пересечение показывает, что данное разделение не является единственным, но все же, с точки зрения Агасси, оно является достаточным, только имеет иное основание. Он выделил в науке два рода проблем - дедуцируемости и применимости - и показал различия в работе ученых-прикладников и изобретателей. В прикладной науке, в отличие от "чистой", проблемой дедуцируемости является поиск начальных условий, которые вместе с данными теориями дают условия, уточняемые практическим рассмотрением. С его точки зрения, "изобретение - это теория, а не практическая деятельность, хотя и с практическим концом". Строго говоря, термин "прикладная наука" является некорректным. Обозначая техническую науку в качестве прикладной, исходят обычно из противопоставления "чистой" и прикладной науки. Если цель "чистой" науки - "знать", то прикладной - "делать". В этом случае прикладная наука рассматривается лишь как применение "чистой" науки, которая открывает законы, достигая тем самым понимания и объяснения природы. Однако, такой подход не позволяет определить специфику технических наук, поскольку и естественные, и технические науки могут быть рассмотрены как с точки зрения выработки в них новых знаний, так и с позиции приложения этих знаний для решения каких-либо конкретных задач, в том числе - технических. Кроме того, естественные науки могут быть рассмотрены как сфера приложения - например, математики. Иными словами, разделение наук по сфере практического применения является относительным. По мнению Марио Бунге, разделение наук на "чистые" и прикладные все же имеет определенный смысл: "эта линия должна быть проведена, если мы хотим объяснить различия в точке зрения и мотивации между исследователем, который ищет новый закон природы, и исследователем, который применяет известные законы к проектированию полезных приспособлений: тогда как первый хочет лучше понять вещи, последний желает через них усовершенствовать наше мастерство". Как показывают конкретные исторические примеры, в реальной жизни очень трудно отделить использование научных знаний от их создания и развития. Как правило, инженеры сознательно или несознательно используют и формулируют общие утверждения или законы; математика выступает для них обычным аналитическим средством и языком. Инженеры постоянно выдвигают гипотезы и проектируют эксперименты для лабораторной или натурной проверки этих гипотез. Все это обычно маркируется и воспринимается как наука... Инженеры используют не столько готовые научные знания, сколько научный метод. Кроме того, в самих технических науках постепенно формируется мощный слой фундаментальных исследований, теперь уже фундаментальные исследования с прикладными целями проводятся в интересах самой техники. Все это показывает условность проводимых границ между фундаментальными и прикладными исследованиями. Поэтому следует говорить о различии фундаментальных и прикладных исследований и в естественных, и в технических науках, а не о противопоставлении фундаментальных и прикладных наук, неизменно относя к первым из них - естественные, а ко вторым - технические науки.