
- •Молекулярная физика и термодинамика
- •1 Основные понятия и определения. Уравнение состояния идеального газа
- •1.1 Предмет и метод молекулярной физики и термодинамики Статистические и термодинамические методы исследования
- •1.2 Термодинамические системы. Термодинамические параметры и процессы
- •1.3. Температура
- •1.4 Уравнение состояния идеального газа
- •2 Первый закон термодинамики
- •2.1 Внутренняя энергия системы
- •2.2 Работа и теплота
- •2.3 Первый закон термодинамики
- •2.4 Работа при расширении или сжатии газа
- •2.5 Теплоемкость идеального газа
- •2.6 Изопроцессы идеального газа
- •3. Статистическая физика
- •3.1 Вероятность и средние значения величин
- •3.3 Число ударов молекул о стенку
- •3.4 Давление газа на стенку сосуда
- •3.5 Средняя энергия молекул
- •3.7 Барометрическая формула
- •3.8 Распределение Больцмана
- •3.9 Функция распределения
- •3.10 Распределение Максвелла
- •3.11 Распределение Максвелла- Больцмана
- •3.12 Средние скорости молекул
- •4 Второй закон термодинамики
- •4.1 Обратимые и необратимые процессы
- •4.2 Круговые процессы.
- •4.3 Цикл Карно, теорема Карно, обратный цикл Карно
- •4.5 Принцип возрастания энтропии
- •4.6 Второй закон термодинамики
- •4.7 Статистический смысл II начала термодинамики
- •4.8 Энтропия и вероятность
3.3 Число ударов молекул о стенку
Рассмотрим
находящийся в равновесии газ, заключенный
в некотором сосуде. Допустим, что молекулы
газа движутся только вдоль трех взаимно
┴ направлений. Это можно допустить
из-за хаотичности движения молекул.
Если в сосуде находится N
молекул, то в любой момент времени вдоль
каждого из направлений будет двигаться
N/3
молекул и половина из них - N/6
вдоль данного направления в одну сторону,
а вторая половина - в другую. Следовательно,
в интересующем нас направлении по
нормали к данному элементу ΔS
стенки сосуда движется N/6
молекул, а для единицы объема -
,n
– концентрация молекул.
Пусть
все молекулы движутся с одинаковой
средней скоростью <v>.
За время Δt
элемента стенки ΔS
достигают все молекулы, находящиеся в
параллелипипеде с площадью основания
ΔS
и длиной
<v>Δt.
Их число Δν = (n/6)ΔS<v>Δt,
следовательно, число ударов о единичную
площадку в единицу времени
Δν/ΔSΔt = (n/6)<v>.
Если
отказаться от допущения, что все молекулы
движутся с одинаковой скоростью v
= <v>,
то необходимо выделить в единице объема
молекулы, скорости которых лежат в
интервале от v
до v+dv.
Их число -
vmax 0
vmax 0.
Количество ударов таких молекул,
долетающих до площадки ΔS
за время Δt
равно dνv
= (1/6)(dnvΔS
Δν
=
dνv
= 1/6ΔSΔt
vdnv
= Выражение
vdnv
по
определению является средней скоростью
молекулы, тогда Δν
= 1/6ΔSΔtn<v>
, т.е., получили то же самое значение
числа ударов.
3.4 Давление газа на стенку сосуда
Давление
по определению можно записать:
,
а поскольку, из второго закона Ньютона:
,
то
.
Значит, необходимо вычислить импульс
,
передаваемый всеми молекулами со всеми
скоростями единице площади за единицу
времени.
Число молекул со скоростью v из общего количества n, долетающих до площадки ΔS за время Δt равно:
dνv = (1/6)(dnvΔSvΔt)
Далее,
умножив это число на импульс, сообщаемый
каждой молекулой при ударе равный –
2mv,
получим импульс, сообщаемый площадке
ΔS
за время Δt
этими молекулами. Изменение импульса
одной молекулы равно K2-K1=
-2mv,
значит, импульс передаваемый молекулой
сте
vmax 0
vmax 0
равен
v.
Импульс, передаваемый всеми молекулами со всеми скоростями:
K
=
(1/6)(dnvΔSvΔt)2mv
= 1/3 m
ΔSΔt
v2dnv
(*)
Выражение
v2dnv
представляет собой среднее значение
квадрата скорости молекул, тогда,
заменив в (*) интеграл и, разделив это
выражение на ΔS
и Δt,
получим давление газа на стенку сосуда:
р = 1/3mn<v2>
т.к. m<v2>/2 = <εпост> по определению, получим:
р =2/3n<εпост>
- основное уравнение молекулярно- кинетической теории. Это уравнение раскрывает физический смысл макропараметра р: давление определяется средним значением кинетической энергии поступательного движения молекул.
3.5 Средняя энергия молекул
Из уравнения состояния идеального газа p=nkT и выражения для давления газа на стенку сосуда р =2/3n<εпост> следует, что
<εпост> = 3/2kT (1), откуда можно заключить, что температура есть величина, прямо пропорциональная средней энергии поступательного движения молекул.
Поступательно движутся молекулы газа. Молекулы твердых и жидких тел совершают колебания вблизи положений равновесия.
Из выражения (1) видно, что <εпост> зависит только от Т и не зависит от массы молекулы.
Т.к., <εпост> = <mv2/2> = m<v2>/2, то из сравнения с выражением (1), получим: <v2> = 3kT/m а средняя квадратичная скорость:
vср.кв. = √<v2> = √3kT/m .
Можно представить <v2> = <v2x>+<v2y>+<v2z> = 3<v2x>, поскольку, все направления движения молекул равноправны, т.е., <v2x> = <v2y> = <v2z>, тогда:
<v2x> = 1/3<v2> = kT/m
Формула (1) определяет энергию поступательного движения молекул. Наряду с этим движением возможны также вращение молекул и колебания атомов, входящих в состав молекул. Например, для двухатомной жесткой молекулы это вращение вокруг двух взаимно перпендикулярных осей, проходящих через центр масс молекулы. Эти виды движения также связаны с запасом энергии молекулы. Ее полную энергию позволяет определить, устанавливаемое статистической физикой, положение о равнораспределении энергии по степеням свободы молекулы. Такую гипотезу впервые высказал Больцман.
Числом степеней свободы механической системы называется количество независимых величин, с помощью которых может быть задано ее положение. Положение материальной точки определяется в пространстве значением трех координат, она имеет три степени свободы. Одноатомной молекуле следует приписывать три степени свободы, двухатомной: в зависимости от характера связи между атомами – либо три поступательных и две вращательных (жесткая связь), т.е. всего пять степеней; либо n = 3+2+1=6 с учетом колебательной степени свободы для нежесткой молекулы.
Поскольку ни одна из поступательных степеней свободы не имеет преимущества перед остальными, на каждую из них приходится в среднем одинаковая энергия 1/2kT. Согласно закону равнораспределения на каждую степень свободы молекулы приходится в среднем одинаковая энергия, равная 1/2kT. Согласно закону среднее значение энергии одной молекулы <ε> будет тем больше, (при одинаковой Т), чем сложнее молекула и чем больше у нее степеней свободы. При определении <ε> необходимо учесть, что колебательная степень свободы обладает вдвое большей «энергетической емкостью» по сравнению с поступательной или вращательной. Это объясняется тем, что колебательное движение связано с наличием кинетической и потенциальной энергии, поэтому на колебательную степень приходится (1/2kT+1/2kT) = kT, т.е., одна половинка в виде εкин , а вторая - εпост.
Т.о. средняя энергия молекулы: <ε> = (i/2)(kT),
Где i- сумма поступательных, вращательных и удвоенного числа колебательных степеней свободы молекул.
i = nпост+nвращ+2nкол , здесь n – число степеней свободы.
Для молекул с жесткой связью i совпадает с числом степеней свободы.
Внутренняя энергия и теплоемкость идеальных газов
В идеальном газе молекулы не взаимодействуют между собой, внутренняя энергия одного моля газа:
Uм = NA<ε> = i/2 NAkT = i/2 RT . Uм = i/2RT.
Если вспомнить, что по определению: Cv = δQ/dT = dU/dT, поскольку, δQ = dU+pdV, а для изохорного процесса dV = 0.
Тогда Cv = (i/2) R , а, учитывая, что Cр = Cv+R, получим:
Cр = (i+2)/2 R
Следовательно, коэффициент Пуассона γ = Cp/Cv = (i+2)/i , таким образом, γ определяется числом и характером степеней свободы молекулы.
Согласно этой ф-лы для одноатомной молекулы i = 3 и γ = 1,67; жесткой двухатомной i =5 и γ = 1,4; упругой двухатомной i = 7, а γ = 1,29. В области температур, близких к комнатной, это хорошо согласуется с опытом. Однако, в широком температурном интервале это не так. Оказывается, что вращательная и колебательная энергии молекулы квантованы. При низких Т вращательные и колебательные степени свободы не возбуждены. Молекула Н2 , например, ведет себя как одноатомная в этой области температур, i = 3. В области Т ≈ 500К вращательные степени «разморожены» <ε> > εвращ и молекула Н2 ведет себя как жесткая двухатомная с = 3+2 = 5. При Т>1000К энергии <ε> достаточно для возбуждения колебательной степени свободы, «включены» все степени свободы, i = 7.