Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
0676762_9D857_teoriya_elektricheskih_cepey.doc
Скачиваний:
23
Добавлен:
20.11.2019
Размер:
1.26 Mб
Скачать
  1. Переходные процессы при разряде конденсатора через активное сопротивление.

Когда присоединяют две пластины конденсатора к электрической батарее, на этих пластинах накапливаются заряды. Когда мы подключаем конденсатор к источнику тока, через последний проходит некоторый зарядный ток, но когда конденсатор заряжен, то ток не проходит через него.

  1. Переходные процессы при разряде конденсатора через активно-индуктивное сопротивление.

  1. Колебательный разряд конденсатора.

Одна из классических задач расчета переходных процессов — анализ разряда конденсатора на цепь с последовательным соединением резистора и катушки (рис. 15.8).

Запишем уравнения переходного процесса в контуре

Исключая из приведенной системы uC, придем к дифференциальному уравнению 2-го порядка относительно тока

Характеристическое уравнение последовательного колебательного контура имеет корни

  1. Время переходного процесса. Постоянная времени цепи.

Рассмотрим переходные процессы в цепи, содержащей последовательно соединенные резистор R и индуктивность L . Уравнение Кирхгофа для такой цепи где u = u(t) - напряжение на входе цепи. Найдем решение этого уравнения для свободной составляющей тока, т.е. при u = 0, в виде iс = Iept . Для этого подставим выражение для тока в исходное уравнение и найдем значение p

Выражение Lp + R=0 представляет собой характеристическое уравнение, которое могло быть получено без подстановки общего выражения для свободной составляющей формальной заменой в однородном дифференциальном уравнении производных тока на pk, где k - порядок производной.

Таким образом, общее решение для тока при переходном процессе в R-L цепи можно представить в виде где t = 1/|p| = L/R - постоянная времени переходного процесса; I - постоянная интегрирования, определяемая по начальным значениям; i - установившийся ток в цепи, определяемый по параметрам R и L и напряжению на входе u.

Длительность переходного процесса в цепи, определяемая значением t , возрастает с увеличением L и уменьшением R.

  1. Напряжение на активном сопротивлении и индуктивности при переходном процессе.

  1. Мгновенная мощность в цепи синусоидального тока.

  2. Полная, активная и реактивная мощности цепи синусоидального тока.

  3. Реактивная мощность цепи. Треугольник мощностей.

  1. Коэффициент мощности и его технико-экономическое значение.

Коэффициент мощности — безразмерная физическая величина, являющаяся энергетической характеристикой электрического тока. Коэффициент мощности характеризует приёмник электроэнергии переменного тока, а именно — степень линейности нагрузки. Равен отношению потребляемой электроприёмником активной мощности к полной мощности. Активная мощность расходуется на совершение работы. Полная мощность — геометрическая сумма активной и реактивной мощностей (в случае синусоидальных тока и напряжения). В общем случае полную мощность можно определить как произведение действующих (среднеквадратических) значений тока и напряжения в цепи. Полная мощность равна корню квадратному из суммы квадратов активной и неактивной мощностей. В качестве единицы измерения полной мощности принято использовать вольт-ампер (В∙А) вместо ватта (Вт).

Коэффициент мощности позволяет судить о нелинейных искажениях, вносимых нагрузкой в электросеть. Чем он меньше, тем больше вносится нелинейных искажений. Кроме того, при одной и той же активной мощности нагрузки мощность, бесполезно рассеиваемая на проводах, обратно пропорциональна квадрату коэффициента мощности. Таким образом, чем меньше коэффициент мощности, тем ниже качество потребления электроэнергии. Для повышения качества электропотребления применяются различные способы коррекции коэффициента мощности, т. е. его повышения до значения, близкого к единице.