Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Metody_optimizatsii.doc
Скачиваний:
7
Добавлен:
18.11.2019
Размер:
4.63 Mб
Скачать

27. Симплексный метод.

Можно определить оптимальное решение перебором всех экстремальных точек, подставляя в них решение, но это может быть громоздко для большого количества точек. Поэтому есть более удобный способ – симплексный метод. Его суть заключается в нахождении хотя бы одной экстремальной точки, а затем передвижения от нее к другим точкам, пока такое движение будет возможно. Исчезновение этой возможности означает, что точка – оптимальна (минимальна/максимальна). Для начала путем теоремы об экстремальных точках (см. 26) находим одну из точек. Например, требуется найти наименьшее значение линейной формы при ограничениях . Найдем экстремальные точки, выбрав свободные переменные равными 0.

Выберем первую точку, значение линейной формы в ней будет . Можно ли найти точку со значением линейной формы меньше? Перепишем ограничения в виде

Переменные, имеющие значения в исходной экстремальной точки, называются базисными, а нулевые переменные – свободными. Решая систему относительно базисных переменных, получим:

Подставляя в линейную форму: .

Теперь попробуем уменьшить значение линейной формы, увеличивая значение величины, входящей в уравнение с отрицательным знаком, то есть . Увеличивая значение, до тех пор, пока одна из базисных переменных не станет равной нулю (потому что они должны быть неотрицательны), получим другую экстремальную точку, в нашем случае . В этой точке значение линейной формы будет , а в ее уравнении все коэффициенты входят с положительными коэффициентами, поэтому уменьшать и дальше форму мы не можем. Таким образом, решение закончено.

Замечание: если бы на окончательном шаге одна из переменных входила с нулевым коэффициентом, это бы означало, что существует множество точек, в которых значение линейной формы минимально.

28. Геометрическая интерпретация симплексного метода.

Каждое из линейных неравенств на переменные ограничивает полупространство в соответствующем линейном пространстве. В результате все неравенства ограничивают некоторый многогранник (возможно, бесконечный), называемый также полиэдральным комплексом. Уравнение W(x)=c, где W(x) - максимизируемый (или минимизируемый) линейный функционал, порождает гиперплоскость L(c). Зависимость от c порождает семейство параллельных гиперплоскостей. Тогда экстремальная задача приобретает следующую формулировку — требуется найти такое наибольшее c, что гиперплоскость L(c) пересекает многогранник хотя бы в одной точке. Пересечение оптимальной гиперплоскости и многогранника будет содержать хотя бы одну вершину, причём, их будет более одной, если пересечение содержит ребро или k-мерную грань. Поэтому максимум функционала можно искать в вершинах многогранника. Принцип симплекс-метода состоит в том, что выбирается одна из вершин многогранника, после чего начинается движение по его рёбрам от вершины к вершине в сторону увеличения значения функционала. Когда переход по ребру из текущей вершины в другую вершину с более высоким значением функционала невозможен, считается, что оптимальное значение c найдено.

Последовательность вычислений симплекс-методом можно разделить на две основные фазы:

нахождение исходной вершины множества допустимых решений,

последовательный переход от одной вершины к другой, ведущий к оптимизации значения целевой функции.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]