Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фізика. Курс лекцій.doc
Скачиваний:
33
Добавлен:
18.11.2019
Размер:
8.8 Mб
Скачать

4.7.2. Рентгенівське випромінювання

У 1895 р. німецький фізик В. Рентген відкрив електромагнітні хвилі, коротші за ультрафіолетові. Вони дістали назву рентгенівських, або Х-променів.

Одержують рентгенівські промені за допомогою спеціальних двохелектродних ламп. На рис. 4.19 схематично показана будова сучасної рентгенівської трубки. У вакуумній трубці розміщені електроди: підігрівний катод і антикатод. Поверхня антикатода скошена, вона не паралельна поверхні катода. Катод приєднують до негативного, а антикатод до позитивно­го полюсів джерела високої напруги - порядку десятків і сотень тисяч вольт. Випромінювані розжареним катодом рентгенівської трубки електрони прискорюються потужним електричним полем у просторі між катодом і антикатодом і з великою швидкістю ударяються в антикатод.

Рис. 4.19. Випромінювання рентгенівських променів

При цьому швидкість електрона практично миттєво зменшується до нуля, тобто сповільнення буде дуже вели­ким. Під час такого швидкого гальмування електрон випромінює короткі електромагнітні хвилі (від 10-8 м до 10-11 м) - рентгенівські промені. Оскільки електрони, які бомбардують антикатод, мають різні швидкості, то під час їх гальмування виникають рентгенівські промені різної довжини хвилі.

Рентгенівські промені, як і ультрафіолетові та інфрачервоні, невидимі оком, але викликають світіння багатьох речовин і сильно діють на світлочутливі матеріали. Тому для їх дослідження застосовуються спеціальні екрани, які світяться під їх дією, або фотографування.

Рентгенівське проміння має велику проникну здатність відносно багатьох речовин, непрозорих для видимого світла. Воно порівняно вільно проникає крізь речовини, які складаються з атомів з малою атомною масою (дерево, м'язові тканини тощо), але помітно поглинається матеріалами, які складаються з атомів важких елементів (наприклад, метали, кістки тощо). Якщо рентгенівські промені проходять крізь об'єкт з нерівномірним розподілом густини, то на вміщеному за об'єктивом екрані або фотопластинці виникає тіньове зображення об'єкта, на якому розподіл освітленості відповідає розподілу густини речовини в об'єкті. М'язова тканина дає слабку тінь, а кістка - більш сильну.

Завдяки цим властивостям рентгенівські промені широ­ко застосовуються в медицині для виявлення змін в організмі (рентгенодіагностика) і в техніці для виявлення дефектів у деталях машин (рентгенодефектоскопія).

Рентгенівські промені використовуються також у лікуванні злоякісних пухлин, оскільки хворі клітини і тканини організму мають підвищену чутливість до їх дії. Тому відповідною дозою рентгенівського проміння можна стримувати ріст і навіть руйнувати хворі тканини організму (наприклад, злоякісні пухлини), не пошкоджуючи сусідніх здорових тканин.

Рентгенівське проміння широко використовують у фізиці як один з найточніших засобів вивчення структури кристалів. У техніці висока проникна здатність рентгенівського проміння використовується для просвічування металевих деталей з метою виявлення дефектів. Відомо, що всередині деталей з металу можуть залишатися шлакові вкраплення, пухирці газів тощо. Ці дефекти виявляються на рентгенознімку деталі. При виготовленні парових котлів застосовується електрозварювання. Якість шва контролюють, просвічуючи його рентгенівським промінням. У техніці важливі деталі проходять спеціальний рентгенівський контроль, щоб виявити і вилучити дефектні деталі.