Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТЕРМОДИНАМИКА.docx
Скачиваний:
8
Добавлен:
27.09.2019
Размер:
128.97 Кб
Скачать

57)Естественная радиоактивность

Естественная радиоактивность обусловлена радиоактивными изотопами (нуклидами) - естественными радионуклидами, содержащимися в земной коре и гидросфере и образовавшимися

в результате нуклеосинтеза еще при возникновении Земли и не распавшихся до настоящего времени (премордиальные радионуклиды). Периоды полураспада премордиальных нуклидов сопоставимы с возрастом Земли;

в результате ядерных реакций под действием первичных и вторичных космических лучей, постоянно идущих в атмосфере, а частично также в литосфере и в метеоритах (космогенные радионуклиды). Например 14N(n,3H)12C, 14N(n,p)14C.

Гамма-лучи

По своим свойствам ?-лучи очень сильно напоминают рентгеновские, но только их проникающая способность гораздо больше, чем у рентгеновских лучей. Это наводит на мысль, что ?-лучи представляют собой электромагнитные волны. Все сомнения в этом отпали после того, как была обнаружена дифракция ?-лучей на кристаллах и измерена длина волны. Она оказалась очень малой — от 10–8 до 10–11 см.

На шкале электромагнитных волн у-лучи непосредственно следуют за рентгеновскими. Скорость распространения в вакууме у ?-лучей такая же, как у всех электромагнитных волн, — около 300000 км/с.

Бета-лучи

С самого начала ?- и ?- лучи рассматривались как потоки заряженных частиц. Проще всего было экспериментировать с ?-лучами,так как они сильно отклоняются как в магнитном, так и в электрическом поле.

Основная задача состояла в определении заряда и массы частиц. При исследовании отклонения ?-частиц в электрических и магнитных полях было установлено, что они представляют собой не что иное, как электроны, движущиеся со скоростями, очень близкими к скорости света. Существенно, что скорости ?-частиц, испущенных данным радиоактивным элементом, неодинаковы. Встречаются частицы с самыми различными скоростями.

Альфа-частицы

Труднее оказалось выяснить природу а-частиц, так как они слабо отклоняются магнитным и электрическим полями.

Окончательно эту задачу удалось решить Резерфорду. Он измерил отношение заряда q частицы к ее массе m по отклонению в электрическом и магнитном полях. Оно оказалось примерно в 2 раза меньше, чем у протона — ядра атома водорода. Для определения массы ?-частицы нужно было измерить еще ее заряд.

Это было сделано лишь после изобретения счетчика Гейгера. С его помощью подсчитывалось число частиц, попадающих в единицу времени внутрь металлического цилиндра, соединенного с электрометром (рис. 7.10). Сквозь очень тонкое окошко ?-частицы могут проникать внутрь счетчика и регистрироваться им. Электрометр позволяет определить суммарный заряд ?-частиц, испущенных за определенный интервал времени. Такого рода опыты показали, что заряд ?-частицы равен удвоенному элементарному заряду. Следовательно, ее масса в 4 раза превосходит массу атома водорода, т. е. равна массе атома гелия. Таким образом, ?-частица оказалась ядром атома гелия.

Закон радиоактивного распада — физический закон, описывающий зависимость интенсивности радиоактивного распада от времени и количества радиоактивных атомов в образце. Открыт Фредериком Содди и Эрнестом Резерфордом, каждый из которых впоследствии был награжден Нобелевской премией. Они обнаружили его экспериментальным путём и опубликовали в 1903 году в работах «Сравнительное изучение радиоактивности радия и тория»[1] и «Радиоактивное превращение»[2], сформулировав следующим образом:Во всех случаях, когда отделяли один из радиоактивных продуктов и исследовали его активность независимо от радиоактивности вещества, из которого он образовался, было обнаружено, что активность при всех исследованиях уменьшается со временем по закону геометрической прогрессии.

Из чего с помощью теоремы Бернулли учёные сделали вывод:

Скорость превращения всё время пропорциональна количеству систем, еще не подвергнувшихся превращению.

Существует несколько формулировок закона, например, в виде дифференциального уравнения:dN/dt=-Lлямбда N

которое означает, что число распадов -dN,произошедшее за короткий интервал времени dt,пропорциональнo числу атомов в образце N.

Для биологического действия радиоактивных излучений характерен ряд общих закономерностей:

1) Глубокие нарушения жизнедеятельности вызываются ничтожно малыми количествами поглощаемой энергии. Так, энергия, поглощённая телом млекопитающего, животного или человека при облучении смертельной дозой, при превращении в тепловую привела бы к нагреву тела всего на 0,001°С. Попытка объяснить "несоответствие" количества энергии результатам воздействия привела к созданию теории мишени, согласно которой лучевое повреждение развивается при попадании энергии в особенно радиочувствительную часть клетки — "мишень".

2) Биологическое действие радиоактивных излучений не ограничивается подвергнутым облучению организмом, но может распространяться и на последующие поколения, что объясняется действием на наследственный аппарат организма. Именно эта особенность очень остро ставит перед человечеством вопросы изучения биологического действия радиоактивных излучений и защиты организма от излучений.

3) Для биологического действия радиоактивных излучений характерен скрытый (латентный) период, т. е. развитие лучевого поражения наблюдается не сразу. Продолжительность латентного периода может варьировать от нескольких минут до десятков лет в зависимости от дозы облучения, радиочувствительности организма и наблюдаемой функции. Так, при облучении в очень больших дозах (десятки тыс. рад) можно вызвать "смерть под лучом", длительное же облучение в малых дозах ведёт к изменению состояния нервной и других систем, к возникновению опухолей спустя годы после облучения.

58)В развитии знаний о «микромире», в частности в изучении явлений радиоактивности, исключительную роль сыграли приборы, позволяющие регистрировать ничтожное действие одной-единственной частицы атомных размеров. Одним из таких замечательных приборов является камера Вильсона, делающая видимыми траектории отдельных быстродвижущихся заряженных частиц

При бомбардировке некоторых люминесцирующих веществ (сернистый цинк, нафталин и др.) быстрыми заряженными частицами наблюдается, что заметная доля энергии тормозящихся в них заряженных частиц превращается в видимый свет: попадание быстрой заряженной частицы на слой такого вещества вызывает кратковременную вспышку света, называемую сцинтилляцией. Яркость вспышки особенно велика в случае а- частиц, так как а-

частица тормозится на пути длины менее 0.1мм,и выделяющаяся световая энергия оказывается сосредоточенной в ничтожном объеме. Сцинтилляции, вызываемые а-частицами в экране из сернистого цинка, могут быть обнаружены глазом. Простейший прибор, служащий для этой цели,— спинтарископ — изображен на рис. 382. Однако визуальный (при помощи глаза) способ наблюдения сцинтилляций крайне утомителен. В настоящее время для счета сцинтилляций пользуются особо чувствительными фотоэлементами (см. § 185) — так называемыми фотоэлектронными умножителями, изобретенными советским физиком Л. А. Кубецким. Сцинтилляции, производимые B- И Y-частицами, гораздо слабее свечения, вызываемого а-частицами; они недоступны глазу, и регистрация их производится только с помощью фотоэлектронных умножителей.