Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы оптика.doc
Скачиваний:
147
Добавлен:
26.09.2019
Размер:
1.92 Mб
Скачать

Интерференция света, когерентность, длина и время когерентности. Интерференция от двух точечных источников, опыт Юнга, зеркала Френеля, зеркало Ллойда, бипризма Френеля.

Интерференция — явление сложения когерентных волн. Когерентные волны- волны с одинаковой частотой колебаний и постояной во времени разностью фаз. В двух самостоятельных источниках света атомы излучают независимо друг от друга. В каждом из таких атомов процесс излучения конечен и длится очень короткое время. За это время возбужденный атом возвращается в нормальное состояние и излучение им света

прекращается. Возбудившись вновь, атом снова начинает испускать световые волны,

но уже с новой начальной фазой. Время, в течение которого атом испускает электромагнитные волны называется временем когерентности. Длина когерентности — путь, пройденый светом за время когерентности.

методом Юнга

С вет от источника S, прошедший через узкую щель в экране А, падет на экран В с двумя щелями S1 и S2, расположенными достаточно близко друг к другу на расстоянии d. Эти щели являются когерентными источниками света. Интерференция наблюдается в области, в которой перекрываются волны от этих источников (поле интерференции). На экране Э мы видим чередование полос с максимумом и минимумом интенсивности света.

Экран расположен на расстоянии l от щелей, причем l>>d . Рассмотрим две световые волны, исходящие из точечных источников S1 и S2. Показатель преломления среды n. Вычислим ширину полос интерференции (темных и светлых полос). ∆ - оптическая разность хода

И з l>>d слудует, что

поэтому

максимумы интерференции ∆=2m*λ/2

минимум интерференции ∆=(2m+1)*λ/2

Подставив в полученое выражение для оптической разности хода получим расстояние между двумя соседними максимумами (или минимумами) равно:

р асстояние между соседними минимумами(максимумами) – шириной интерференционной полосы.

зеркала Френеля

 Френель предложил в качестве двух когерентных источников воспользоваться двумя изображениями одного и того же действительного источника света в двух плоских зеркалах.

где A1O и А2O − два плоских зеркала, расположенных под углом φ; S − источник света, находящийся на расстоянии r от места соприкосновения зеркал в точке О.  Для построения изображений источника S в обоих зеркалах воспользуемся тем, что мнимое изображение, даваемое плоским зеркалом, лежит за зеркалом на таком же расстоянии, на каком объект лежит перед зеркалом. Проведем из точки О окружность с радиусом r = OS и опустим из точки S перпендикуляр на продолжение прямой ОА1; точка пересечения продолжения этого перпендикуляра с окружностью В1 даст изображение источника S в первом зеркале ОА1. Так же построим изображение В2 даваемое во втором зеркале ОA2.  С другой стороны, изображение B2 лежит в той точке, куда переместилось бы изображение В1 при повороте первого зеркала ОА1 на угол φ. Поэтому <B1OB2 = 2φ, и линейное расстояние d между В1 и В2 приближенно равно 2φr:

d = 2φr. (1)

 Свет от обоих изображений В1 и В2 падает на экран DD/, отстоящий от зеркал на расстоянии Lo. Заслонка Е мешает попадать на экран DD/ прямому свету от источника S. Так как оба изображения B1 и В2 воспроизводят колебания одного и того же действительного источника, то они когерентны, и на экране DD/ наблюдаются интерференционные полосы. Расстояние между полосами Δl равно

Δl = λL/d,

где L − расстояние от источников до места наблюдения полос. Подставляя сюда вместо d его значение по (1) и замечая, что приближенно

L = Lo + r,

получим

Δl = (Lo + r)λ/(2φr),

или отсюда

λ = 2φr•Δl/(Lo + r).

 Так как в последней формуле все величины, стоящие в правой части, доступны измерению, то из нее видно, что опыт с зеркалами Френеля позволяет измерить длину световых волн λ.  Зеркала в опыте Френеля приходится располагать под весьма малым углом φ друг к другу, так как иначе полосы получаются слишком узкими. Источник света берется в виде узкой щели, параллельной ребру О, образованному зеркалами. При этом интерференционные максимумы имеют вид прямых параллельных полос. При наблюдении в белом свете центральная полоса получается белая (k = 0, усиливаются лучи всех длин волн λ), остальные − окрашенные.

зеркало Ллойда

В опыте, предложенном Ллойдом, интерферируют лучи, исходящие непосредственно от источника S

и отраженные от поверхности зеркала АВ. Лучи, отраженные от зеркала АВ, как бы исходят от мнимого источника S1 когерентного с S.  Для того чтобы расстояние d между S и S/ было достаточно мало, лучи должны отражаться от зеркала под углом, близким к 90°. Источником света служит щель, параллельная плоскости зеркала.  Особенность интерференционной картины, наблюдаемой с помощью зеркала Ллойда, заключается в том, что центральная полоса получается не светлой, а темной. Это указывает на то, что лучи, проходящие одинаковые геометрические пути, все же сходятся в опыте Ллойда с разностью хода λ/2. Такая „потеря" полуволны (или, другими словами, изменение фазы на π) происходит при отражении света от поверхности стекла, коэффициент преломления которого больше, чем воздуха. В дальнейшем мы увидим, в каких случаях при отражении света от прозрачной среды происходит потеря полуволны.

бипризма Френеля.

Две стеклянные призмы с малым преломляющим углом θ изготавливают из одного куска стекла так, что призмы сложены своими основаниями, Источник света - ярко освещенная щель S. После преломления в бипризме падающий пучок расщепляется на два, исходящих от мнимых источников S1 и S2, которые дают две когерентные цилиндрические волны.

Так как преломляющий угол θ мал, то все лучи отклоняются каждой из половинок бипризмы на один и тот же угол φ . Можно показать, что в этом случае

, ф=(n-1)* θ

здесь n - показатель преломления материала призмы.

Расстояние между источниками:

. d=2a*sin(ф)