Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
kaun shpora.docx
Скачиваний:
14
Добавлен:
26.09.2019
Размер:
1.61 Mб
Скачать

8. Переход металл-полупроводник.

В современных полупроводниковых приборах применяются также контакты между металлами и полупроводниками. Процессы в таких переходах зависят от работы выхода электронов, то есть от той энергии, которую должен затратить электрон, чтобы выйти из металла или полупроводника. Чем меньше работа выход, тем больше электронов может выйти из данного тела

Рис. 17 – Контакт металла (М) с полупроводником

Если в контакте металла с полупроводником n-типа (рис 17а) работа выхода электронов из металла Ам меньше, чем работа выхода из полупроводника, то будет преобладать выход электронов и металла. Поэтому в слове полупроводника около границы накапливаются основные носители (электроны) и этот слой становится обогащенным. Сопротивление этого слоя будет малым при любой полярности приложенного напряжения. Такой переход не обладает выпрямляющими свойствами. Его называют невыпрямляющим (омическим) контактом. Подобный же невыпрямляющий переход получается в контакте металла с полупроводником p-типа (рис 17б). если работа выхода электронов из полупроводника меньше чем у металла. Иные свойства имеет переход как на рисунке 17в. В этом случае электроны будут переходить главным образом из полупроводника в металл и в приграничном слое полупроводника образуется область, обедненная основными носителями и потому имеющая большое сопротивление. Здесь создается сравнительно высокий потенциальный барьер, высота которого будет существенно изменяться в зависимости от полярности приложенного напряжения. Такой переход обладает выпрямительными свойствами. Этот потенциальный барьер называется барьер Шоттки, а полупроводниковые диоды называются диодами Шоттки. В диодах Шоттки отсутствуют процессы накопления и рассасывания зарядов. Поэтому диоды обладают значительно более высоким быстродействием по сравнения с обычными p-n переходами. Аналогичные выпрямляющие свойства имеет контакт металла с полупроводником p-типа при Ам < Ап.

9. ВАХ р-n-перехода и перехода металл-полупроводник.

Рис. 12

1 – прямая ветвь; 2 – обратная ветвь при лавинном пробое; 3 – обратная ветвь при тепловом пробое; 4 – обратная ветвь при туннельном пробое.

Зависимость тока через p-n переход от величины напряжения называется его ВАХ. При расчете ВАХ предполагается, что электрическое поле вне объединенного слоя отсутствует. ВАХ p-n перехода описывается выражением ,Где I – ток, текущий через p-n переход; q – заряд электрона; Uвн – напряжение, приложенное к p-n переходу; k – постоянная Больцмана; T – температура по Кельвину; Io – обратный ток (ток насыщения).Выражение (1) принято называть уравнением Эберса-Молла. Это уравнение представляет наиболее общий вид теорет. ВАХ p-n перехода и является основой для любых других более точных описаний физических процессов в переходе. Для прямого напряжения можно пренебречь 1 по сравнению с экспотенциальной составляющей .При обратном напряжении порядка 0,1 – 0,2В экспотенциальное выражение в выражении (1) много меньше единицы:

.На практике ток прямой много меньше тока прямого теоретического

ВАХ перехода металл-полупроводник.

Расчет транспортных процессов носителей заряда в структуре металл-полупроводник, исходящий из представления термоэлектронной эмиссии с поверхности полупроводника и собирания термоэлектронов поверхностью металла дает следующее выражение для ВАХ: ,Где , где А – коэффициент, зависящий от свойств материала; - контактная разность потенциалов; U – напряжение, приложенное к переходу металл-полупроводник

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]