Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
теория для вани.docx
Скачиваний:
11
Добавлен:
23.09.2019
Размер:
536.86 Кб
Скачать

Площадь треугольника

  1. , так как , то:

  2.  — формула Герона

  3.  — для прямоугольного треугольника

  4.  — для равностороннего треугольника

  5.  — если треугольник задан по стороне и двум прилежащим к ней углам

  6.  — если треугольник задан по стороне и двум прилежащим к ней углам

  7.  — ориентированная площадь треугольника на комплексной плоскости с вершинами в a, b, c.

Где:

  •  — высота, проведённая на сторону ,

  •  — полупериметр,

  •  — радиус вписанной окружности,

  •  — радиус вневписанной окружности, касающейся стороны ,

  •  — радиус описанной окружности,

  •  — координаты вершин треугольника.

Для площади справедливы неравенства:

  • , причём оба равенства достигаются.

  • , где равенство достигается для равнобедренного прямоугольного треугольника.

Вычисление площади треугольника в пространстве с помощью векторов

Пусть вершины треугольника находятся в точках , , .

Введём вектор площади . Длина этого вектора равна площади треугольника, а направлен он по нормали к плоскости треугольника:

Положим , где , ,  — проекции треугольника на координатные плоскости. При этом

и аналогично

Площадь треугольника равна .

Альтернативой служит вычисление длин сторон (по теореме Пифагора) и далее по формуле Герона.

Площадь параллелограмма

, где a — сторона, h — высота проведенная к этой стороне.

, где a и b — стороны, а  — угол между сторонами a и b.

.

, где p — полупериметр, r — радиус вписанной окружности

20)

  • Объём пирамиды может быть вычислен по формуле:

где  — площадь основания и  — высота;

Прямой параллелепипед

Объём V=Sо*h

Прямоугольный параллелепипед

Объём V=abc, где a, b, c — измерения прямоугольного параллелепипеда.

Куб

Объём V=a³

21)

Уравнения плоскости

Плоскость — алгебраическая поверхность первого порядка: в декартовой системе координат плоскость может быть задана уравнением первой степени.

  • Общее уравнение (полное) плоскости

где и  — постоянные, причём и одновременно не равны нулю; в векторной форме:

где  — радиус-вектор точки , вектор перпендикулярен к плоскости (нормальный вектор). Направляющие косинусы вектора :

Если один из коэффициентов в уравнении плоскости равен нулю, уравнение называется неполным. При плоскость проходит через начало координат, при (или , ) П. параллельна оси (соответственно или ). При ( , или ) плоскость параллельна плоскости (соответственно или ).

  • Уравнение плоскости в отрезках:

где , ,  — отрезки, отсекаемые плоскостью на осях и .

  • Уравнение плоскости, проходящей через точку перпендикулярно вектору нормали :

в векторной форме:

  • Уравнение плоскости, проходящей через три заданные точки , не лежащие на одной прямой:

(смешанное произведение векторов), иначе

  • Нормальное (нормированное) уравнение плоскости

в векторной форме:

где - единичный вектор,  — расстояние П. от начала координат. Уравнение (2) может быть получено из уравнения (1) умножением на нормирующий множитель

(знаки и противоположны).

22)

Векторное параметрическое уравнение прямой в пространстве:

где  — радиус-вектор некоторой фиксированной точки лежащей на прямой,  — ненулевой вектор, коллинеарный этой прямой (называемый её направляющим вектором),  — радиус-вектор произвольной точки прямой.

Параметрическое уравнение прямой в пространстве:

где  — координаты некоторой фиксированной точки лежащей на прямой;  — координаты вектора, коллинеарного этой прямой.

Каноническое уравнение прямой в пространстве:

где  — координаты некоторой фиксированной точки лежащей на прямой;  — координаты вектора, коллинеарного этой прямой.

Общее векторное уравнение прямой[уточнить] в пространстве:

Поскольку прямая является пересечением двух различных непараллельных плоскостей, заданных соответственно общими уравнениями:

А1х + В1у + С1 = 0,

А2х + В2у + С2 = 0,

то уравнение прямой можно задать системой этих уравнений:

Уравнение прямой в пространстве можно записать в виде векторного произведения радиуса-вектора произвольной точки этой прямой на фиксированный направляющий вектор прямой :

где фиксированный вектор , ортогональный вектору , можно найти, подставляя в это уравнение радиус-вектор какой-нибудь одной известной точки прямой.

23)

Определение. Любая прямая на плоскости может быть задана уравнением первого порядка

Ах + Ву + С = 0,

причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим уравнением прямой. В зависимости от значений постоянных А,В и С возможны следующие частные случаи:

•  C = 0, А ≠0, В ≠ 0 – прямая проходит через начало координат

•  А = 0, В ≠0, С ≠0 { By + C = 0}- прямая параллельна оси Ох

•  В = 0, А ≠0, С ≠ 0 { Ax + C = 0} – прямая параллельна оси Оу

•  В = С = 0, А ≠0 – прямая совпадает с осью Оу

•  А = С = 0, В ≠0 – прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных начальных условий.

24)

Пусть плоскость задана уравнением и дана точка . Тогда расстояние от точки до плоскости определяется по формуле

(11.7)

        Доказательство.     Расстояние от точки до плоскости  -- это, по определению, длина перпендикуляра , опущенного из точки на плоскость (рис. 11.9).

Рис.11.9.Расстояние от точки до плоскости

Вектор и нормальный вектор n плоскости параллельны, то есть угол между ними равен 0 или , если вектор n имеет направление противоположное, указанному на рис. 11.9. Поэтому

Откуда

(11.8)

Координаты точки , которые нам неизвестны, обозначим . Тогда . Так как , то . Раскрыв скобки и перегруппировав слагаемые, получим

(11.9)

Точка лежит на плоскости , поэтому ее координаты удовлетворяют уравнению плоскости: . Отсюда находим, что . Подставив полученный результат в формулу (11.9), получим . Так как , то из формулы (11.8) следует формула (11.7).    

Пусть плоскости и заданы соответственно уравнениями и . Требуется найти угол между этими плоскостями.

Плоскости, пересекаясь, образуют четыре двугранных угла (рис. 11.6): два тупых и два острых или четыре прямых, причем оба тупых угла равны между собой, и оба острых тоже равны между собой. Мы всегда будем искать острый угол. Для определения его величины возьмем точку на линии пересечения плоскостей и в этой точке в каждой из плоскостей проведем перпендикуляры и к линии пересечения. Нарисуем также нормальные векторы и плоскостей и с началами в точке (рис. 11.6).

Рис.11.6.Угол между плоскостями

Если через точку провести плоскость , перпендикулярную линии пересечения плоскостей и , то прямые и и изображения векторов и будут лежать в этой плоскости. Сделаем чертеж в плоскости (возможны два варианта: рис. 11.7 и 11.8).

Рис.11.7.Угол между нормальными векторами острый

Рис.11.8.Угол между нормальными векторами тупой

В одном варианте (рис. 11.7) и , следовательно, угол между нормальными векторами равен углу , являющемуся линейным углом острого двугранного угла между плоскостями и .

Во втором варианте (рис. 11.8) , а угол между нормальными векторами равен . Так как

то в обоих случаях .

По определению скалярного произведения . Откуда

и соответственно

(11.4)

Так как координаты нормальных векторов известны, если заданы уравнения плоскостей, то полученная формула (11.4) позволяет найти косинус острого угла между плоскостями.

Если плоскости перпендикулярны, то перпендикулярны и их нормальные векторы. Получаем условие перпендикулярности плоскостей:

(11.5)

Если плоскости параллельны, то коллинеарны их нормальные векторы. Получаем условие параллельности плоскостей

(11.6)

Угол между прямыми. Угол между прямой и плоскостью.

Угол между прямыми в пространстве равен углу между их направляющими векторами. Поэтому, если две прямые заданы каноническими уравнениями вида

и косинус угла между ними можно найти по формуле:

. (8.14)

Условия параллельности и перпендикулярности прямых тоже сводятся к соответствующим условиям для их направляющих векторов:

- условие параллельности прямых, (8.15)

- условие перпендикулярности прямых. (8.16)

Угол φ между прямой, заданной каноническими уравнениями

и плоскостью, определяемой общим уравнением

Ax + By + Cz + D = 0, можно рассматривать как дополнительный к углу ψ между направляющим вектором прямой и нормалью к плоскости. Тогда

(8.17)

Условием параллельности прямой и плоскости является при этом условие перпендикулярности векторов n и а:

Al + Bm + Cn = 0, (8.18)

а условием перпендикулярности прямой и плоскости – условие параллельности этих векторов: A/l = B/m = C/n. (8.19)

 25)

Линейное, или векторное пространство над полем  — это непустое множество , на котором введены операции

  1. сложения, то есть каждой паре элементов множества ставится в соответствие элемент того же множества, обозначаемый и

  2. умножения на скаляр (то есть элемент поля ), то есть любому элементу и любому элементу ставится в соответствие единственный элемент из , обозначаемый .

При этом на операции накладываются следующие условия:

  1. , для любых (коммутативность сложения);

  2. , для любых (ассоциативность сложения);

  3. существует такой элемент , что для любого (существование нейтрального элемента относительно сложения), в частности не пусто;

  4. для любого существует такой элемент , что (существование противоположного элемента относительно сложения).

  5. (ассоциативность умножения на скаляр);

  6. (унитарность: умножение на нейтральный (по умножению) элемент поля P сохраняет вектор).

  7. (дистрибутивность умножения на вектор относительно сложения скаляров);

  8. (дистрибутивность умножения на скаляр относительно сложения векторов).

Элементы множества называют векторами, а элементы поля  — скалярами. Свойства 1-4 совпадают с аксиомами абелевой группы.