Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы по физике.doc
Скачиваний:
71
Добавлен:
23.09.2019
Размер:
442.88 Кб
Скачать
  1. Магнитное поле.

Опыт показывает, что, подобно тому, как в пространстве, окружающем электрические заряды, возникает электростатическое поле, так и в пространстве, окружающем токи и постоянные магниты, возникает силовое поле, называемое магнитным. Наличие магнитного поля обнаруживается по силовому действию на внесенные в него проводники с током или постоянные магниты. Название «магнитное поле» связывают с ориентацией магнитной стрелки под действием поля, создаваемого током (это явление впервые обнаружено датским физиком X. Эрстедом в 1820 г. (1777—1851)).

Подобно тому, как при исследовании электростатического поля использовались точечные заряды, при исследовании магнитного поля используется замкнутый плоский контур с током (рамка с током), линейные размеры которого малы по сравнению с расстоянием до токов, образующих магнитное поле или магнитной стрелкой.

Постоянный магнит – тело, изготовленное из специальных сортов стали, прочно сохраняет свою намагниченность длительное время, после удаления его из внешнего поля.

2. Сила Лоренца.

1. Действует со стороны магнитного поля на движущийся электрический заряд.

Направление силы Лоренца определяется по правилу левой руки: Если левую расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре вытянутых пальца указывали на направление движения положительного заряда, то отогнутый большой палец будет указывать направление силы Лоренца.

Сила Лоренца не совершает работы, не меняет кинетическую энергию частиц в магнитном поле, а меняет их направление движения, она является центростремительной (рис.1).

FЛ = Fц

если α = 900;

Рис.1. Рис.2.

Если α ≠ 900 ,то тогда частица движется по спирали (рис.2).

4. Применение. Таким образом, траектория заряженной частицы как бы навивается на линии магнитной индукции. Это явление используется в технике для магнитной термоизоляции высокотемпературной плазмы, то есть полностью ионизированного газа при температуре порядка 106 K. Вещество в таком состоянии получают в установках типа «Токамак» при изучении управляемых термоядерных реакций. Плазма не должна соприкасаться со стенками камеры. Термоизоляция достигается путем создания магнитного поля специальной конфиругации. В качестве примера на рис. 3 изображена траектория движения заряженной частицы в магнитной «бутылке» (или ловушке).

Рис. 3

Магнитная «бутылка». Заряженные частицы не выходят за пределы «бутылки». Магнитное поле «бутылки» может быть создано с помощью двух круглых катушек с током.

Аналогичное явление происходит в магнитном поле Земли, которое является защитой для всего живого от потоков заряженных частиц из космического пространства. Быстрые заряженные частицы из космоса (главным образом от Солнца) «захватываются» магнитным полем Земли и образуют так называемые радиационные пояса, в которых частицы, как в магнитных ловушках, перемещаются туда и обратно по спиралеобразным траекториям между северным и южным магнитными полюсами за времена порядка долей секунды. Лишь в полярных областях некоторая часть частиц вторгается в верхние слои атмосферы, вызывая полярные сияния. Радиационные пояса Земли простираются от расстояний порядка 500 км до десятков земных радиусов. Следует вспомнить, что южный магнитный полюс Земли находится вблизи северного географического полюса (на северо-западе Гренландии). Природа земного магнетизма до сих пор не изучена.

Радиационные пояса Земли. Быстрые заряженные частицы от Солнца (в основном электроны и протоны) попадают в магнитные ловушки радиационных поясов. Частицы могут покидать пояса в полярных областях и вторгаться в верхние слои атмосферы, вызывая полярные сияния.