Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы ТОТ.doc
Скачиваний:
14
Добавлен:
22.09.2019
Размер:
2.47 Mб
Скачать

26. Молекулярная диффузия.

Диффузия(Д.) представляет собой перенос вещества из области с большей его концентраций в область с меньшей концентрацией.

Д. одного компонента в окружающей среде, возникающая за счет градиента его концентрации наз-ся бинарной(градиентной) Д.

Основное уравнение градиента Д. :

,где -плотность массового потока компонента с; -молярная масса диффундирующего компонента и смеси; D-коэф. молекулярной Д. комп. в среде; N-число киломолей комп. и смеси; -плотность.

величина векторная, « - » означает, что поток массы направлен из области больших конц. компонента в обл. меньш. Это уравнение справедливо для сплошных сред.

Закон Фика. Это у-ние можно записать в скалярной форме, через массовую плотность комп. или через относительную массовую концентрацию: ,где D-масса компонента переносимая в ед. времени через ед. поверхности при единичном градиенте.

Коэф. может быть задан по отношению к определенной среде.

Коэф. молекулярной Д. газов увелич. с ростом темп-ры и уменьш. с ростом давления: ,где n-показатель степени(1,5÷2); о-окружающая среда.

Коэф. Д. паров углеводородов уменьш. с ростом их молярной массы. Наибольшее значение коэф. Д. имеют нефтеновые углеводороды,а наименьш.-ароматические. Для разбавленных растворов коэф. Д. не зависит от концентрации компонентов.

В тверд. телах Д. совершается за счет колебания атомов около их равновесных положений D= .

Из кинетической теории газов=>коэф. т/проводности λ связан с коэф. молекулярной Д. соотношением или тройной аналогией: или

, где ν-коэф. кинематической вязкости.

27. Диффузия в движущейся среде.

28. Термодиффузия и диффузионный перенос теплоты.

29. Типы теплообменных аппаратов.

Теплообме́нниктеплообме́нный аппарат — устройство, в котором осуществляется передача теплоты от горячеготеплоносителя к холодному (нагреваемому). Теплоносителями могут быть газы, пары, жидкости. В зависимости от назначения теплообменные аппараты используют как нагреватели и как охладители. Применяется в технологических процессах нефтеперерабатывающей, нефтехимической, химической, газовой и других отраслях промышленности, в энергетике и коммунальном хозяйстве.

Основные типы

Теплообменники по способу передачи теплоты подразделяют на поверхностные, где отсутствует непосредственный контакт теплоносителей, а передача тепла происходит через твёрдую стенку, и смесительные, где теплоносители контактируют непосредственно. Поверхностные теплообменники в свою очередь подразделяются на рекуперативные и регенеративные, в зависимости от одновременного или поочерёдного контакта теплоносителей с разделяющей их стенкой.

Рекуперат́ивный теплообме́нник — теплообменник, в котором горячий и холодный теплоносители движутся в разных каналах, в стенке между которыми происходит теплообмен. При неизменных условиях параметры теплоносителей на входе и в любом из сечений каналов, остаются неизменными, независимыми от времени, т.е процесс теплопередачи имеет стационарный характер. Поэтому рекуперативные теплообменники называют также стационарными.

В зависимости от направления движения теплоносителей рекуперативные теплообменники могут быть прямоточными при параллельном движении в одном направлении, противоточными при параллельном встречном движении, а также перекрестноточными при взаимно перпендикулярном движении двух взаимодействующих сред.

Часто под рекуперативным теплообменником ошибочно понимается рекуперативный противоточный теплообменник. (В нём вместо уравнивания температурных потенциалов происходит их обмен, потери могут составлять до 30 %).

Наиболее распространённые в промышленности рекуперативные теплообменники:

  • Кожухотрубные теплообменники,

  • Элементные (секционные) теплообменники,

  • Двухтрубные теплообменники типа "труба в трубе",

  • Витые теплообменники,

  • Погружные теплообменники,

  • Оросительные теплообменники,

  • Ребристые теплообменники,

  • Спиральные теплообменники,

  • Пластинчатые теплообменники,

  • Пластинчато-ребристые теплообменники,

  • Графитовые теплообменники.

Регенеративные теплообменники

В регенеративных поверхностных теплообменниках теплоносители (горячий и холодный) контактируют с твердой стенкой поочерёдно. Теплота накапливается в стенке при контакте с горячим теплоносителем и отдаётся при контакте с холодным.

Смеси́тельный теплообме́нник (или конта́ктный теплообме́нник) — теплообменник, предназначенный для осуществления тепло- и массообменных процессов путем прямого смешивания сред (в отличие от поверхностных теплообменников). Наиболее распространены пароводяные струйные аппараты ПСА — теплообменники струйного типа, использующие в своей основе струйный инжектор[. Смесительные теплообменники конструктивно устроены проще, нежели поверхностные, более полно используют тепло. Однако, пригодны они лишь в случаях, когда по технологическим условиям произ­водства допустимо смешение рабочих сред.

30. Теплота и работа.

Теплота, количество теплоты, количество энергии, получаемой или отдаваемой системой при теплообмене (при неизменных внешних параметрах системы: объёме и др.). Наряду с работой количество теплоты является мерой изменения внутренней энергии U системы. При теплообмене внутренняя энергия системы меняется в результате прямых взаимодействий (соударений) молекул системы с молекулами окружающих тел.

В отличие от U — однозначной функции параметров состояния, количество Т., являясь лишь одной из составляющих полного изменения U в физическом процессе, не может быть представлено в виде разности значений какой-либо функции параметров состояния. Следовательно, элементарное количество Т. (соответствующее элементарному изменению состояния тела) не может быть в общем случае дифференциалом какой-либо функции параметров состояния. Передаваемое системе количество теплоты Q, как и работа А, зависит от того, каким способом система переходит из начального состояния в конечное.

При обратимых процессах, согласно второму началу термодинамики, элементарное количество теплоты dQ = TdS, гдеТ — абсолютная температура системы, dS — изменение её энтропии. Т. о., передача системе Т. эквивалентна передаче системе определённого количества энтропии. Отвод Т. от системы эквивалентен уменьшению энтропии. В общем случае необратимых процессов dQ £ TdS.

ТЕПЛОТА-кинетическая часть внутренней энергии вещества, определяемая интенсивным хаотическим движением молекул и атомов, из которых это вещество состоит. Мерой интенсивности движения молекул является температура. Количество теплоты, которым обладает тело при данной температуре, зависит от его массы.

№31. Первый закон термодинамики.

Первый закон термодинамики (закон сохранения энергии для тепловых процессов) определяет количественное соотношение между изменением внутренней энергии системы дельта U, количеством теплоты Q, подведенным к ней, и суммарной работой внешних сил A, действующих на систему.Первый закон термодинамики – Изменение внутренней энергии системы при ее переходе из одного состояния в другое равно сумме количества теплоты, подведенного к системе извне, и работы внешних сил, действующих на нее:

Первый закон термодинамики – количество теплоты, подведенное к системе, идет на изменение ее внутренней энергии и на совершение системой работы над внешними телами:

Частные случаи первого закона термодинамики для изопроцессов .При изохорном процессе объем газа остается постоянным, поэтому газ не совершает работу. Изменение внутренней энергии газа происходит благодаря теплообмену с окружающими телами:

При изотермическом процессе количество теплоты, переданное газу от нагревателя, полностью расходуется на совершение работы:

При изобарном расширении газа подведенное к нему количество теплоты расходуется как на увеличение его внутренней энергии и на совершение работы газом:

Адиабатный процесс – термодинамический процесс в теплоизолированной системе.

Теплоизолированная система – система, не обменивающаяся энергией с окружающими телами.

Формула КПД теплового двигателя:

Здесь Q1 – количество теплоты, полученное рабочим телом, Q2 – количество теплоты, отданное холодильнику. A – полезная работа.

32. Теплоемкость

Теплоемкость -количество теплоты, поглощаемой телом при нагревании на 1 градус (1°С или 1К); точнее — отношение кол-ва теплоты, поглощаемой телом при бесконечно малом изменении его темп-ры, к этому изменению. Т. ед. массы в-ва (г, кг) наз. удельной Т., 1 моля в-ва — молярной (мольной) Т. Ед. Т. служат Дж/(кг•К), Дж/(моль•К), Дж/(м3•К) и внесистемная ед. кал/(моль•К).

Теплоёмкость тела (обычно обозначается латинской буквой C) — физическая величина, определяющая отношение бесконечно малого количества теплоты δQ, полученного телом, к соответствующему приращению его температуры δT:

Единица измерения теплоёмкости в системе СИ — Дж/К.

Удельной теплоёмкостью называется теплоёмкость, отнесённая к единичному количеству вещества. Количество вещества может быть измерено в килограммах, кубических метрах и молях. В зависимости от того, к какой количественной единице относится теплоёмкость, различают массовую, объёмную и молярную теплоёмкость.

Массовая теплоёмкость (С) — это количество теплоты, которое необходимо подвести к единице массы вещества, чтобы нагреть его на единицу температуры. В СИ измеряется в джоулях на килограмм на кельвин (Дж·кг−1·К−1).

Объёмная теплоёмкость (С′) — это количество теплоты, которое необходимо подвести к единице объёма вещества, чтобы нагреть его на единицу температуры. В СИ измеряется в джоулях на кубический метр на кельвин (Дж·м−3·К−1).

Молярная теплоёмкость (Сμ) — это количество теплоты, которое необходимо подвести к 1 молю вещества, чтобы нагреть его на единицу температуры. В СИ измеряется в джоулях на моль на кельвин (Дж/(моль·К)).

Объёмная теплоёмкость :

  • Объемная изобарная теплоёмкость - .

  • Объёмная изохорная теплоёмкость - .

Молярная теплоёмкость :

  • Молярная изобарная теплоёмкость - .

  • Молярная изохорная теплоёмкость - .

Средняя теплоёмкость .

-первая сред.теплоемкость-численно равна истинной теплоемкоти при среднеарифм.температуре процесса.

33. Идеальный газ (уравнение состояния).

Идеальный газматематическая модель газа, в которой предполагается, что потенциальной энергией взаимодействия молекул можно пренебречь по сравнению с их кинетической энергией. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями.

Уравнение состояния идеального газа (иногда уравнение Клапейрона или уравнение МенделееваКлапейрона) — формула, устанавливающая зависимость между давлением, молярным объёмом и абсолютной температурой идеального газа.

Уравнение имеет вид:

где

  •  — давление,

  •  — молярный объём,

  •  — универсальная газовая постоянная

  •  — абсолютная температура,К.

Так как , где  — количество вещества, а , где  — масса,  — молярная масса, уравнение состояния можно записать:

Эта форма записи носит имя уравнения (закона) Менделеева — Клапейрона.