Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы по химмиии.docx
Скачиваний:
17
Добавлен:
21.09.2019
Размер:
928.53 Кб
Скачать

Степень гидролиза соли определяется следующими факторами.

1.Так как гидролиз процесс эндотермический, то повышение температуры усиливает гидролиз.

2. Чем слабее кислота и/или основание, образующиеся при гидролизе, тем выше степень гидролиза их солей.

3. Чем меньше молярная концентрация соли, тем степень гидролиза выше, т.е. с разбавлением гидролиз усиливается.

4. По принципу Ле-Шателье добавление продуктов гидролиза его подавляет.

Билет№46. Плохорастворимые сильные электролиты. Произведение растворимости. Условия выпадения и растворения осадков

Насыщенный раствор находится в равновесии с твердой фазой растворяемого вещества. Гетерогенное равновесие «осадок насыщенный раствор» характеризует константа равновесия. Если малорастворимый электролит диссоциирует по уравнению: AmBn mAn+ + nBm-,

то выражение для константы равновесия – произведения растворимости ( ) – будет иметь вид: Кр = = [An+]m·[Bm-]n, где [An+], [Bm-] – молярные концентрации ионов An+ и Bm-, соответственно, в насыщенном растворе. Например, для равновесия: СaSO4 Ca2+ + SO42–

= 3,72∙10-5 [моль22] (при 25оС)

Следовательно, для насыщенного водного раствора малорастворимого электролита произведение равновесных молярных концентраций его ионов в степенях, равных стехиометрическим коэффициентам, есть величина постоянная при данной температуре, и называемая произведением растворимости. Зная произведение растворимости (ПР), можно вычислить растворимость вещества (S) при данных условиях, т.е. концентрацию насыщенного раствора в [моль/л] и в [г/л]. Например, для бинарных электролитов (ВaSO4, СaСO3, AgI и др.) растворимость [моль/л] численно равна:

В ненасыщенном растворе возможно растворение дополнительного количества вещества, так как концентрация меньше, чем в насыщенном. Из перенасыщенного раствора осадок образуется, так как его концентрация больше, чем в насыщенном.

Отсюда вытекают условия образования и растворения осадка:

  1. Если [An+]m·[Bm-]n = ПРAmBn, то осадок находится в равновесии с раствором (насыщенный раствор);

  2. Если [An+]m·[Bm-]n > ПРAmBn, то осадок выпадает (перенасыщенный раствор);

  3. Если [An+]m·[Bm-]n < ПРAmBn, то осадок растворяется (ненасыщенный раствор).

Важным следствием является правило, используемое для более полного удаления из раствора какого-либо иона: растворимость малорастворимого электролита уменьшается при введении хорошо растворимого электролита, имеющего одноименный (общий) ион с малорастворимым электролитом.

Билет№47. ОВР, основные понятия, направление протекания ОВР

Окислительно-восстановительными реакциями (ОВР) называют реакции, протекающие с изменением степеней окисления участвующих в них элементов. Степень окисления элемента – формальный заряд, который был бы на атоме, если бы все связи в соединении были ионными. Характерные степени окисления элемента определяются конфигурацией валентного электронного слоя.

Окислитель – акцептор электронов, то есть «принимает электроны» и восстанавливается. Восстановитель является донором электронов, то есть «отдает электроны» и окисляется. В окислительно-восстановительных реакциях восстановитель переходит в соответствующую окисленную форму, и наоборот, окислитель – в соответствующую восстановленную форму. Каждый из реагентов со своим продуктом образует сопряженную окислительно-восстановительную пару.

Окисление – процесс, в котором степень окисления элемента повышается вследствие отдачи электронов. Восстановление – процесс, в котором степень окисления элемента понижается вследствие присоединения электронов. Процессы окисления и восстановления протекают одновременно.

Окислительно-восстановительные реакции подразделяют на межмолекулярные, внутримолекулярные, диспропорционирования (или самоокисления-самовосстановления), конпропорционирования.

В уравнениях окислительно-восстановительных реакций должен быть отражен «электронный» и «материальный» баланс. Электронный баланс: число электронов, «отданных» восстановителем, должно быть равно числу электронов, «принятых» окислителем. Материальный баланс: число атомов одного элемента в левой и правой части уравнения должно быть одинаковым.

Метод электронного баланса применяют для составления уравнений реакций ОВР любого типа. Он включает определение степеней окисления элементов, наименьшего общего кратного числа «отданных» восстановителем и «принятых» окислителем электронов, определение коэффициентов электронного баланса:

K2Cr2O7 + 6KI + 7H2SO4 → Cr2(SO4)3 + 3I2 + 4K2SO4 + 7H2O

Сr+6 + 3e → Cr+3 1

I – 1e → Io 3

Метод ионно-электронного баланса применяют для составления уравнений ОВР, протекающих в водных растворах с учетом диссоциации сильных хорошо растворимых электролитов на ионы. Он включает составление полуреакций окисления и восстановления. Причем материальный баланс подбирается с использованием частиц H2O и H+ - для реакций в кислой среде и частиц H2O и OH - для реакций в щелочной среде.

MnO4+ 8H+ + 5e → Mn2+ + 4H2O 2 (процесс восстановления)

SO32– + H2O – 2e → SO42– + 2H+ 5 (процесс окисления)

Далее определяют заряд каждой из систем до и после превращения; рассчитывают число «отданных» восстановителем и «принятых» окислителем электронов и определяют коэффициенты электронного баланса; проводят сложение полуреакций окисления и восстановления, умноженных на соответствующие коэффициенты электронного баланса и «приведение подобных членов». В итоге получают краткое ионное уравнение:

2MnO4+ 6H+ + 5SO32– →2Mn2+ + 5SO42– + 3H2O (краткое ионное уравнение)

Коэффициенты, полученные в кратком ионном уравнении, переносятся в молекулярное уравнение (с учетом состава соединений):

2KMnO4 + 3H2SO4 + 5Na2SO3 → 2MnSO4 + 5Na2SO4 + 3H2O + K2SO4

Определяют коэффициенты перед элементами, не участвовавшими в ОВР (например, К).

Свойства сопряженной окислительно-восстановительной пары характеризует окислительно-восстановительный потенциал ок./вос., В).

Окислительно-восстановительная реакция протекает самопроизвольно, если изменение свободной энергии Гиббса (G) отрицательно: G < 0. Для окислительно-восстановительных реакций, протекающих в водной среде, изменение свободной энергии Гиббса связано со значениями окислительно-восстановительных потенциалов соотношением:

G = -nFок - φвос) < 0, где n - число электронов, F - постоянная Фарадея [Кул/моль], φок и φвос – окислительно-восстановительные потенциалы (В) системы окислителя и восстановителя, соответственно. Разность окислительно-восстановительных потенциалов окислителя и восстановителя называют электродвижущей силой реакции (ЭДС) и измеряют в Вольт. Таким образом, ОВР между данным окислителем и данным восстановителем протекает самопроизвольно в прямом направлении, если ЭДС положительна: ЭДС = [φок – φвос ] > 0 или φок > φвос.

Билет№48. Понятие об электродном потенциале. Водородный электрод

Если металлическую пластинку (электрод) опустить в воду, то катионы металла на ее поверхности гидратируются молекулами воды и переходят в жидкость. При этом электроны, остающиеся в металле, заряжают его поверхность отрицательно. В итоге установится равновесие между катионами и поверхностью металла:

Ме0 – n ē + m H2O Меn+ m H2O (1),

где n — число отдаваемых электронов. На границе металл – жидкость возникает двойной электрический слой, характеризующийся определенным скачком потенциала – электродным потенциалом. Каждый металл обладает при равновесии определенным электродным потенциалом.

При погружении металлов в раствор их солей знак заряда металлической пластинки зависит от природы металла. Если металл является активным (например, Zn в растворе ZnSO4), то равновесие обратимой реакции смещено в прямом направлении, т.е. в сторону окисления. Возникающий электродный потенциал имеет знак «минус». Для малоактивного металла (например, Cu в растворе CuSO4) равновесие реакции смещено в обратном направлении, т.е. в сторону восстановления. Возникающий потенциал имеет знак «плюс». Если удалять из металла избыточные электроны, то равновесие (1) будет смещено вправо. Такие условия создаются в гальванических элементах.

Так как методов прямого измерения электродных потенциалов не существует, то возможно только измерение ЭДС ГЭ и вычисление неизвестного потенциала по известному. Поэтому определяют относительные электродные потенциалы в определенных условиях – стандартные электродные потенциалы (φ0). За нулевой потенциал принят потенциал стандартного водородного электрода, представляющего собой платиновую пластину, опущенную в раствор с [H+] = 1 моль/л при T = 298 K (25 oC) и стандартном давлении H2 (P = 1,01·105 Па (1атм)). Процессы, происходящие на водородном и металлическом электродах описываются уравнениями:

H+aq + ē ½(H2) (φoH+/H2 = 0 В); Меn+aq + n ē Ме0oМеn+/Me, В).

Определяемая в вольтах разность потенциалов и есть относительный электродный потенциал металла.

Стандартным электродным потенциалом металла называют его электродный потенциал, возникающий при погружении металла в раствор собственного иона с концентрацией 1 [моль/л] и при T = 298 K (t = 25 oC), измеренный по сравнению со стандартным водородным электродом.

Располагая металлы в ряд по мере возрастания их стандартных электродных потенциалов (φoМеn+/Me), получаем так называемый ряд стандартных электродных потенциалов. Положение металла в ряду стандартных электродных потенциалов характеризует его восстановительную способность, а также окислительные свойства его ионов в водных растворах. Чем меньше значение φoМеn+/Me, тем больше восстановительная способность металла и тем меньше окислительная способность его ионов.

Выводы по ряду стандартных электродных потенциалов:

1. Каждый металл способен вытеснить из растворов солей те металлы, которые стоят после него в ряду стандартных электродных потенциалов, т.е. имеют большую алгебраическую величину стандартного потенциала.

2. Водород может быть вытеснен из разбавленного раствора H2SO4 и HCl теми металлами, которые имеют стандартные потенциалы со знаком минус.

Билет№49. Направление ОВР. Уравнение Нернста

Билет№50. Гальванические элементы

Гальванический элемент (ГЭ) - это прибор, в котором химическая энергия окислительно-восстановительной реакции превращается в электрическую. Возьмем два сосуда. В один из них, содержащий раствор ZnSO4 опустим цинковый электрод, в другой, содержащий раствор CuSO4 - медный электрод. Состояние равновесия для обоих электродов выражается уравнением:

Zn Zn2+ + 2 ē (2); Cu Cu2+ + 2 ē (3).

Способность отдавать ионы в раствор у Zn больше, чем у Cu, поэтому концентрация электронов на цинковом электроде больше. Если соединить электроды внешним проводником, а растворы солей электролитическим мостиком, то электроны с цинка будут переходить на медь. Этот переход нарушит равновесие (2) и (3). Происходящие процессы выражаются уравнениями:

Zn0 – 2 ē → Zn2+ - процесс окисления (протекает на аноде);

Cu2+ + 2 ē → Cu0 - процесс восстановления (протекает на катоде).

Анодом является металл с более низким значением электродного потенциала.

Суммарно: Zn0 + Cu2+ → Zn2+ + Cu0

Электродвижущая сила (ЭДС) ГЭ равна разности электродных потенциалов между катодом и анодом.

Билет№51. Ряд напряжений металлов

Билет№52. Химические свойства металлов: взаимодействие с водой и солями

Главным признаком металлов, как химических веществ, является их способность терять электроны при взаимодействии с другими атомами, проявляя восстановительные свойства. В соответствии с восстановительной способностью получен ряд химической активности металлов: от Li до Al – активные, от Al до H+ – средней активности. Металлы, расположенные в ряду активности справа от водорода, называют малоактивными или благородными.

С водой взаимодействуют, вытесняя водород из воды, только те металлы, значение электродных потенциалов которых значительно меньше чем у воды (–0,41 В).

2Li + 2H2O  2LiOH + H2

Металлы, расположенные между магнием и свинцом пассивируют протекание реакции, с образованием защитной оксидной пленки.

Билет№53. Химические свойства металлов: взаимодействие с растворами щелочей и кислот

Металлы, стоящие в ряду электродных потенциалов левее водорода, взаимодействуют с хлороводородной кислотой. Окислителем в хлороводородной кислоте является ион водорода H+:

Fe + 2HCl  FeCl2 + H2

Металлы взаимодействуют с серной кислотой. В разбавленной, также как в хлороводородной кислоте, окислителем является ион водорода:

Ме + Н2SO4 (разб.)  MeSO4 + H2

В концентрированной серной кислоте в роли окислителя выступает атом серы . В этом случае становится возможным окисление некоторых благородных металлов.

3Cu + 4H2SO4  3CuSO4 + S + 4H2O

Более сильным окислителем, чем серная кислота является азотная. В разбавленной азотной кислоте окислителем выступает атом азота . Продуктами восстановления азота могут являться NH4NO3, N2, N2O, NO. Концентрированная азотная кислота обычно восстанавливается до NO.

Действие растворов щелочей возможно только на «амфотерные» металлы Be, Al, Zn, Sn, Pb. Причем реакция протекает в две стадии: реакция металла с водой с образованием гидроксида и водорода, реакция гидроксида металла со щелочью.

Билет№54. Взаимодействие металлов с неметаллами.

Металлы реагируют с простыми веществами - неметаллами: со фтором – почти все металлы, продукты реакции называют фториды; хлором – почти все, продукты реакции называют хлориды; кислородом – многие металлы, продукты реакции называют оксиды; серой – многие при нагревании, продукты называют сульфидами; водородом, азотом – щелочные и щелочно - земельныне металлы, продукты реакции гидриды и нитриды, соответственно.

Билет№55. Химическая и электрохимическая коррозия

Коррозия – самопроизвольный окислительно-восстановительный процесс разрушения металла при взаимодействии с окружающей средой. Среда, в которой происходит разрушение металла, называется коррозионной, а образующиеся в результате коррозии химические соединения – продуктами коррозии. Продукты – оксиды, сульфиды, карбонаты, сульфаты и т.д. – представляют собой прочные соединения, содержащие металлы в ионном виде, которые обладают существенно иными физическими свойствами. По механизму протекания различают два основных вида коррозии: химическая и электрохимическая.

Химическая коррозия подчиняется основным законам химической кинетики гетерогенных реакций. Химическая коррозия подразделяется на газовую – окисление металла кислородом или другими газами (SO2, CO2, H2 и пр.) при высокой температуре и полном отсутствии влаги на поверхности металлического изделия и коррозию в неэлектролитах – разрушение металла в жидких или газообразных агрессивных средах, обладающих малой электропроводностью.

Электрохимическая коррозия это окисление металлов в электропроводных средах, сопровождающееся образованием и протеканием электрического тока. С электрохимическим механизмом протекают следующие виды процесса коррозии: 1) коррозия в электролитах; 2) почвенная коррозия; 3) электрокоррозия – разрушение подземного металлического сооружения, вызванное блуждающими токами; 4) атмосферная коррозия – разрушение металлов в атмосфере воздуха или среде любого влажного газа; 5) контактная коррозия – коррозия, вызванная электрическими контактами двух металлов, имеющих различный электрохимический потенциал.

При электрохимической коррозии на металле протекают две реакции:

анодная - ионизация атомов металла с переходом ионов металла в раствор электролита: Me → Men+ + nē (окисление 1);

катодная: Ох + nē → Red (восстановление 2).

Билет№56. Методы защиты от коррозии металлов. Протекторная защита