Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Nauki_o_Zemle.docx
Скачиваний:
51
Добавлен:
20.09.2019
Размер:
534.79 Кб
Скачать

[Править]Землетрясение в Японии (2011)

Основная статья: Землетрясение в Японии (2011)

Землетрясение у восточного побережья острова Хонсю в Японии, также Великое восточнояпонское землетрясение — землетрясение магнитудой, по текущим оценкам, от 9,0[33]. до 9,1[34] произошло 11 марта 2011 года в 14:46 по местному времени. Эпицентр землетрясения был определён в точке с координатами 38,322° с. ш. 142,369° в. д. восточнее острова Хонсю, в 130 км к востоку от города Сендай и в 373 км к северо-востоку от Токио[33]. Гипоцентр наиболее разрушительного подземного толчка (произошедшего в 05:46:23 UTC) находился на глубине 32 км ниже уровня моря в Тихом океане. Землетрясение произошло на расстоянии около 70 км от ближайшей точки побережья Японии. Первоначальный подсчёт показал, что волнам цунами потребовалось от 10 до 30 минут, чтобы достичь первых пострадавших областей Японии. Через 69 минут после землетрясения цунами затопило аэропорт Сендай.

Это сильнейшее землетрясение в известной истории Японии[33] и седьмое[35], а по другим оценкам даже шестое[36], пятое[34] или четвёртое[37] по силе за всю историю сейсмических наблюдений в мире[38]. Однако по количеству жертв и масштабу разрушений оно уступает землетрясениям в Японии 1896 и 1923 (тяжелейшему по последствиям) годов.

О прогнозе землетрясений

В конце прошлого века группа известных западных сейсмологов провела сетевые дебаты[39], главным вопросом которых был «Является ли достоверный прогноз индивидуальных землетрясений реалистичной научной целью?». Все участники дискуссии, несмотря на значительные расхождения в частных вопросах, согласились с тем, что

  1. детерминистические предсказания отдельных землетрясений с точностью, достаточной для того, чтобы можно было планировать программы эвакуации, нереальны;

  2. по крайней мере некоторые формы вероятностного прогноза текущей сейсмической опасности, основанные на физике процесса и материалах наблюдений, могут быть оправданы.

Даже если бы точность измерений и несуществующая пока физико-математическая модель сейсмического процесса дали возможность с достаточной точностью определить место и время начала разрушения участка земной коры, магнитуда будущего землетрясения остаётся неизвестной. Дело в том, что все модели сейсмичности, воспроизводящие график повторяемости землетрясений, содержат тот или иной стохастический генератор, создающий в этих моделях динамический хаос, описываемый лишь в вероятностных терминах. Более явно источник стохастичности качественно можно описать следующим образом. Пусть распространяющийся во время землетрясения фронт разрушения подходит к участку повышенной прочности. От того, будет разрушен этот участок или нет, зависит магнитуда землетрясения. Например, если фронт разрушения пройдёт дальше, землетрясение станет катастрофическим, а если нет, останется небольшим. Исход зависит от прочности участка: если она ниже некоторого порога, разрушение пойдет по первому сценарию, а если выше, по второму. Возникает «эффект бабочки»: ничтожно малое различие в прочности или напряжениях приводит к макроскопическим последствиям, которые нельзя предсказать детерминистически, поскольку это различие меньше любой точности измерений. А предсказание места и времени землетрясения с неизвестной и, возможно, вполне безопасной магнитудой не имеет практического смысла, в отличие от расчёта вероятности того, что сильное землетрясение произойдет.

Тем не менее, китайские учёные, казалось бы, достигли огромных успехов в предсказании землетрясений — они в течение нескольких лет осуществляли мониторинг наклона поверхности, уровня грунтовых вод, а также содержание радона (газа) в горных породах. По предположению исследователей, все эти параметры, кроме сезонных изменений, а также многолетних тенденций, должны резко меняться за несколько недель или месяцев перед крупным землетрясением. Учёные предсказали землетрясение 4 февраля 1975 года в густонаселённом Ляонине, жертвами которого могли бы стать миллионы человек. Однако вскоре, как по иронии судьбы, случилось таншаньское землетрясение (8,2 по Рихтеру) 27 июля 1976 года, которое предсказано не было, и количество жертв (более 650 тысяч) было одним из самых больших в истории наблюдений.

Афтершо́к (англ. aftershock) — повторный сейсмический толчок, меньшей интенсивности по сравнению с главным сейсмическим ударом[1].

Сильные землетрясения всегда сопровождаются многочисленными афтершоками. Их количество и интенсивность со временем уменьшаются, а продолжительность проявления может длиться месяцами. Особенно велика вероятность сильных афтершоков в первые часы после главного толчка. Известно много случаев, когда поврежденные главным ударом здания рушились именно при повторных, менее сильных толчках. Афтершоки представляют угрозу при проведении спасательных работ.

Наличие афтершоков связано не столько с остаточными напряжениями непосредственно в очаге, сколько с быстрым (во время главного удара землетрясения) увеличением напряжения в окрестностях очага случившегося землетрясения из-за перераспределения напряжений. Во время главного удара землетрясения — пластической (и хрупкой) деформации пород земной коры в очаге землетрясения жёсткая плита земной коры сдвигается как целое на десятки сантиметров или даже на метры. При этом механические напряжения в очаге уменьшаются от максимальных (от уровня предела прочности) до минимальных остаточных. Зато напряжение в окрестностях очага существенно увеличивается (в результате смещения плиты), иногда приближая это напряжение к самому пределу прочности. При превышении предела прочности (в окрестностях очага главного удара) и происходят афтершоки. В результате смещения плиты механические напряжения возрастают и на большом удалении от очага (подобно тому, как это происходит в окрестностях очага). В результате такого возрастания напряжения на границах плиты могут приблизиться к пределу прочности коры по её периметру, вследствие чего после больших землетрясений — смещений по границе плиты может пройти череда индуцированных землетрясений.

Форшок — землетрясение, произошедшее до более сильного землетрясения и связанное с ним примерно общим временем и местом. Обозначение форшоков, основного землетрясения и афтершоков возможно только после всех этих событий.

Предполагается, что форшоки — часть процесса подготовки сильного землетрясения.[2] По одной из моделей всё происходит каскадно — маленькое землетрясение запускает всё большие по силе, что продолжается вплоть до основного толчка. Тем не менее, анализ некоторых форшоков показал, что, вместе с афтершоками, они — часть единого процесса разрядки в зоне разлома. Это подтверждается наблюдаемой взаимосвязью между частотой форшоков и частотой афтершоков у землетрясения

Эпице́нтр — перпендикулярная проекция центра подземного или надземного события — землетрясения или атомного взрыва — на поверхность Земли.

Гипоцентр — центральная точка очага землетрясения. В случае протяжённого очага под гипоцентром понимают точку начала вспарывания разрыва.

Глубина залегания гипоцентра обычно колеблется от нескольких километров до 700 километров. В верхней части земной коры (до 20 километров) гипоцентры появляются в результате хрупких деформаций в толще пород. В более глубоких слоях гипоцентры возникают на общем фоне преобладания пластических деформаций.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]