Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ermakov (1).doc
Скачиваний:
4
Добавлен:
20.09.2019
Размер:
3.13 Mб
Скачать

С помощью этой теоремы можно обосновать формулу Ньютона-Лейбница. Изучение доказательства проведем методом подготовительных задач.

  1. Приращение аргумента, приращение функции.

Задача: ”На рисунке площадь криволинейной трапеции представлена как функция от x. Укажите на этом рисунке S(x); S(x+x); S=S(x+x) – S(x)”.

S(x) = a A B x; S(x+x) = a A C ; S = x B C ; ( необходимо потому, что учащиеся встречаются с новой геометрической интерпретацией уже известных понятий ).

  1. Определение производной.

“ Запишите определение производной функции применительно к функции S(x) ”. В результате получим запись:

3. Понятие функции, непрерывной в точке.

“Пусть f(x) – функция, непрерывная в точке x.(см. рисунок) Отметим на оси абсцисс точки x,

x+∆x и точку с, лежащую между ними. Пусть ∆x→0. К чему стремится f(c)? Из графических

соображений получаем ответ, что если ∆x→0, то с→x, а f(c)→f(x).

4. Утверждение о том, что площадь криволинейной трапеции с основанием ∆x можно заменить равной площадью прямоугольника с тем же основанием ∆x и высотой f(c), где с – некоторая точка отрезка [x; x+∆x].

Существование точки с утверждается теоремой и может быть проиллюстрировано следующими заданиями: ”На рисунке дана криволинейная тапеция с основанием ∆x. Построить прямоугольник, у которого основание было бы равно ∆x, а площадь равнялась бы площади криволинейной трапеции.” Задание выполняется ”на глаз”, от руки и преследует цель добиться интуитивного(на наглядно-геометрическом уровне) осознания рассматриваемого факта.

5. Определение первообразной.

“Пусть S(x) – первообразная f(x). Поясните, что это обозначает. Пусть S(x) – одна из первообразных для функции f(x). Запишите формулу для общего вида первообразных функции f(x)”(привычное определение первообразной применяется в новых обозначениях).

Доказательство теоремы целесообразно разбить на три части:

    1. Введём функцию S(x). Рассмотрим функцию S(x), определенную на отрезке [a,b], которая выражает зависимость площади криволинейной трапеции от аргумента x. Дадим аргументу x приращение ∆x, такое, что .

Тогда приращение функции в точке x: (∆x полагаем положительным)

2) Докажем что функция S(x) является первообразной для функции для всех

Согласно определению производной, Так как - площадь криволинейной трапеции с основанием , то её можно заменить равной площадью прямоугольника с основанием и высотой f(c), где

Тогда:

Поскольку с лежит между x и x+∆x, то при ∆x→0 точка с стремится к x, а f(c)→f(x). Эти рассуждения можно записать в одну строчку следующим образом:

Итак, .

3) Подведем итоги. Мы доказали , что S(x)– первообразная для f(x) на [a,b]. Но по условию F(x) – также первообразная для f(x) на этом отрезке. Следовательно, функции S(x) и F(x) отличаются друг от друга на некоторую константу С:

(1)

Пусть x=a равенство (1) примет вид: , откуда C=-F(a). При x=b равенство (1) запишется в виде: S=S(b)=F(b)+C=F(b)-F(a). Таким образом, S= F(b)-F(a)

Рассмотрим простейший случай криволинейной трапеции – обычную трапецию. Пусть также трапеция образована графиком функции y=x и прямыми: x=1 и x=2. По формуле площади трапеции, известной из курса планиметрии, . Первообразная данной функции , а разность . Таким образом, этот пример подтверждает, что площадь трапеции может быть найдена как приращение первообразной: . Методика использования рассмотренного примера при ознакомлении учащихся с теоремой может быть такой: вначале ставится учебная проблема о нахождении связи между площадью криволинейной трапеции и первообразной; приводится пример, указывающий эту связь; формулируется теорема или сначала сообщается теорема, затем приводится примет, подтверждающий эту теорему.

Методическая схема и аспекты введения понятия интеграла в средней школе.

Методическая схема введения понятия интеграла.

1)привести подводящую задачу;

2)сформулировать определение интеграла

1) Задачи, подводящие к этому понятию.

Задача№1. На отрезке [a,b] задана непрерывная и неотрицательная функция y=f(x). Укажите новый способ(не связанный с первообразной) нахождения площади S криволинейной трапеции, образованной графиком этой функции и прямых x=a и x=b.

Этапы решения задачи: 1) построение ступенчатой фигуры и вычисление её площади

[a,b] разбиваем на n равных частей:

Одна сторона прямоугольника - , вторая - , поэтому:

2) Выражение площади криволинейной трапеции через .

Производим деление [a;b] на более “мелкие” части и вычисляем следующее значение . После сравнения получаем: .

Задача№2. Пусть материальная точка движется прямолинейно с некоторой мгновенной скоростью , где - непрерывная на отрезке функция. Требуется найти путь, который пройдет материальная точка за промежуток времени от до .

В простейшем случае, когда мгновенная скорость постоянна, путь, пройденный телом, равен произведению его скорости на время движения. В общем случае, когда мгновенная скорость непостоянна, поступают следующим образом:

Сравнивая результаты решения этих двух задач, формулируем общий метод решения: разбиение отрезка, на котором задана функция, на равные части; составление суммы вида , которая принимается в качестве приближенного значения искомой величины; выполнение предельного перехода: . Такие пределы встречаются при решении многих задач из разных областей науки и техники. Поэтому они получили специальное название “интеграл функции f(x) от a до b” и обозначение . Таким образом, по определению: , где f(x) – непрерывная на [a,b] функция; - точки, разбивающие отрезок [a,b] на равные части; - длина каждой из этих частей.

Запишем результаты решенных задач. Площадь криволинейной трапеции, заданной непрерывной функцией f(x) на [a,b],

Путь, пройденный материальной точкой за промежуток времени от до со скоростью , где - непрерывная на отрезке функция,

.

Сравнивая формулы площади криволинейной трапеции и , получаем: , где F – первообразная для f на [a,b] – формула Ньютона-Лейбница, позволяющее вычислять интегралы.

Анализ материала учебных пособий, связанных с введением понятия “интеграл” и получением способа вычисления интегралов, приводят к следующим важным в методическом отношении выводам:

  1. определение интеграла и формула Ньютона-Лейбница дают возможность доказать ряд часто применяемых свойств интеграла. В процессе доказательства этих свойств понятие интеграла и его геометрический смысл усваиваются глубже. Можно предложить, например, установить справедливость следующих утверждений:

  1. если функция f имеет на отрезке [a,b] первообразную, то , где C – некоторая постоянная;

  2. доказать формулу вычисления производной от интеграла с переменным верхним пределом интегрирования: , где f(x) – функция, непрерывная на интервале, содержащем точки a и x.

Предложенные упражнения полезны ещё и потому, что в процессе их решения устанавливаются (и используются) связи между операциями дифференцирования и интегрирования, между понятиями “производная”, “первообразная”, “интеграл” и их свойствами.

Понятие “интеграла” вводится для функции непрерывной на некотором отрезке (такая функция имеет на этом отрезке первообразную). Сознательному усвоению учащимися этого понятия (и понятия первообразной) будет способствовать специальное привлечение внимания школьников к этому факту.

25.

Образовательные цели изучения темы «Показательная и логарифмическая функции» в средней школе.

Изучение темы «Показательная, логарифмическая и степенная функции» в курсе алгебры и начала анализа предусматривает знакомство учащихся с вопросами:

Обобщение понятия о степени; понятие о степени с иррациональным показателем; решение иррациональных уравнений и их систем; показательная функция, ее свойства и график; основные показательные тождества: ; ;тождественные преобразования показательных выражений; решение показательных уравнений, неравенств и систем; понятие об обратной функции; логарифмическая функция, ее свойства и график; основные логарифмические тождества: ; ; тождественные преобразования логарифмических выражений; решение логарифмических уравнений, неравенств и систем; производная показательной функции; число е и натуральный логарифм; производная степенной функции; дифференциальное уравнение радиоактивного распада.

Основная цель – привести в систему и обобщить имеющиеся у учащихся сведения о степени, ознакомить их с показательной, логарифмической и степенной функциями и их свойствами (включая сведения о числе е и натуральных логарифмах); научить решать несложные показательные и логарифмические уравнения, их системы (содержащие также и иррациональные уравнения).

Рассматриваются свойства и графики трех элементарных функций: показательной, логарифмической и степенной. Систематизация свойств указанных функций осуществляется в соответствии с принятой схемой исследования функций. Достаточное внимание должно быть уделено работе с логарифмическими тождествами: тождественные преобразования логарифмических выражений применяются как при изложении теоретических вопросов курса (например, при выводе формулы производной показательной функции), так и при выполнении различного рода упражнений, например, решение логарифмических уравнений и неравенств.

Приведен краткий обзор свойств степенной функции в зависимости от различных значений показателя р.

Особое внимание уделяется показательной функции как той математической модели, которая находит наиболее широкое применение при изучении процессов и явлений окружающей действительности. Рассматриваются примеры различных процессов (например, радиоактивный распад, изменение температуры тела); показывается, что решение дифференциальных уравнений, описывающих эти процессы, является показательная функция. В связи с этим для показательной функции дается формула производной, вывод которой проводится с привлечением интуитивных представлений учащихся.

В ходе изучения свойств показательной, логарифмической и степенной функций учащиеся систематически решают простейшие показательные и логарифмические уравнения и неравенства, а также иррациональные уравнения. По мере закрепления соответствующих умений целесообразно также предлагать им уравнения и неравенства, сводящиеся к простейшим в результате несложных тождественных преобразований.

10. Наиболее доступным введение логарифмической функции можно было бы провести после введения понятия обратной функции. Однако методика изложения темы об обратной функции сложна из-за сложных самого материала. Тема «Понятие об обратной функции» приведена в учебнике «Алгебры и начала анализа. 10-11» и рассчитана на необязательное изучение. В эту тему входят:

1) обратимость функций, связанное с решением следующих задач: вычислить значение функции по данному значению аргумента и найти значение аргументов, при которых функция принимает данное значение . Вторая задача не всегда имеет единственное решение (например, для , ). Функция принимает каждое свое значение в единственной точке области определения, называется обратимой, т.е. если обратима, а число принадлежит , то уравнения имеет решение и притом только одно.

2) Обратная функция – как новое понятие – поясняется на конкретных примерах.

Определение. Пусть - произвольная обратимая функция. Для любого числа из ее области значений имеется в точности одно значение , принадлежащее области определения , такое, что: . Поставив в соответствие каждому это значение , получим новую функцию с областью определения и областью значений .

29-30. Ознакомление учащихся с показательной и логарифмической функциями начиная с изучения свойств степеней и логарифмов.

Курс алгебры знакомит учащихся с понятием степени с рациональным показателем. Таким образом для любого основания степени (где , ). Можно построить функцию: , , область определения которой – множество действительных чисел, необходимо ввести определение, степени с иррациональным показателем. Используемое свойство степени с основным, например, большим единицы (возрастании), рациональное приближение иррационального числа α: r1< α< r2. Исходя из графического изображения зависимости показателя степени и значения степени, показывается, что найдется такое значение y, которое будет наибольшим среди всех ar1 и наименьшим среди всех ar2 , которое можно считать значением aα.

Затем формируется определение показательной функции: функция, заданная формулой y=ax ( , ), называется показательной функцией с основанием a, и формулируемые основные свойства: D(ax)=R; E(ax)=RТ; ax возрастает при a>1 и ax убывает при 0<a<1; напоминаются основные свойства степеней. Т.о. показательная функция есть систематизация, обобщение и расширение знаний учащихся о свойствах степени.

В качестве приложения свойств показательной функции рассматриваются решения простейших показательных уравнений и неравенств.

Логарифмическая функция – новый математический объект для учащихся. К понятию логарифма учащихся подводят в процессе решения показательного уравнения ax=b в том случае, если b нельзя представить в виде степени с основанием a. Наше уравнение в случае b>0 имеет единственный корень, который называют логарифмом b по основанию a и обозначают logab, т.е. alogab=b. Одновременно с введением нового понятия учащиеся знакомятся с основным Логарифмическим тождеством. При работе с логарифмами применяются следующие их свойства, вытекающие из свойств показательной функции:

При любом ( ) и любых положительных x и y, выполнены равенства:

1. loga1=0

2. logaa=1

3. logaxy= logax+ logay

4. logax/y= logax- logay

5. logaxp= plogax

При доказательстве используется основное логарифмическое тождество:

x=alogax; y=alogay

Рассмотрим доказательство 3:

xy=alogax a logay=alogax+logay т.е. xy=alogax+logay=alogaxy, ч.т.д.

Основные свойства логарифма широко применяются в ходе преобразования выражений, содержащих логарифмы.

№497 (Алгебра и начала анализа, 10-11)

Найти , если:

т.е. равны основания логарифмов, равны значения логарифмов равны логарифмируемые выражения. Этот прием рассуждения в дальнейшем будет применим при решении простейших логарифмических уравнений.

31. Методика изучения логарифмической функции

Изучение логарифмической функции начинается с выделения определения: функцию, заданную формулой называют логарифмической функцией с основанием . Основные свойства выводится из свойств показательной функции:

1. , т.к. при решении уравнения , т.е. любое положительное число имеет логарифм по основанию .

2. , т.к. по определению логарифма любого действительного числа справедливо равенство: , т.е. функции вида принимает значение в точке .

3. Логарифмическая функция на всей области определения возрастает (при a>1) или убывает (при 0<a<1).

Покажем, что при a>1 возрастает. Пусть и , надо доказать, что: . Допустим противное, т.е. что . Т.к. показательная функция при a>1 возрастает, то из неравенства следует: , что противоречит выбору . Следовательно: и функция при a>1 – возрастает.

Т.к. при a>1 функция возрастает, то логарифмическая функция положительна при x>1 и отрицательна для 0<x<1 (для основания 0<a<1 – наоборот). На основании рассмотренных свойств строится график этой функции.

33. Методика ознакомления учащихся с аксиомами в курсе школьной геометрии.

Одна из главных задач обучения геометрии состоит в усвоении учащимися её теоретических основ и овладение навыками применения их на практике, в развитии логического мышления учащихся, способности к доказательным, аргументированным рассуждениям. При изучении школьного курса геометрии развиваем пространственное воображение и представление учащихся, геометрическое “видение” окружающего мира.

Пособие Погорелова характеризуется более высоким уровнем строгости изложения теоретического материала в начале курса. Здесь приводится полный список аксиом, необходимые определения и теоремы, доказательства. Строгость изложения рассматривается как средство выработки у учащихся навыков полноценной логической аргументации. Усилена роль задач в обучении. Это происходит за счет рационального и компактного изложения теоретического материала и повышения удельного веса содержательных задач, практически отсутствуют задания на разучивание определений, подведение к теоремам. При изложении материала используются методы синтетической и аналитической геометрии (например, изложение векторной алгебры происходит с применением метода координат).

Логико-математическая система учебника (его логическая структура, система определений, доказательство) должна учитывать выборочное применение нескольких математических методов. Координаты, векторы, геометрические преобразования способствует не только тому, что курс геометрии становится более современным, но является и новым методами изложения учебного материала.

Традиционно-синтетические аспекты занимают ведущее положение в геометрии, служат основой изложения остального материала, способствуют формированию пространственного представления и воображения учащихся (недаром некоторые разделы традиционно-синтетической геометрии(параллельность, перпендекулярность прямых и плоскостей, жесткость треугольника) называют “строительной геометрией”).

Придавая темам: параллельные и перпендикулярные прямые, признаки равенства треугольников, свойства равнобедренного и равностороннего треугольников, окружность, описанная около треугольника (вписанная в треугольник), задача на построение; четырёхугольники, правильные многоугольники, излагаем традиционно, максимальные образовательные цели, можно увидеть в них начала систематического курса геометрии.

В качестве вспомогательного математического метода к традиционно-синтетическому рассматривается координатно-векторный метод. Подготовка к вспомогательному методу выражается в раннем введении системы координат в ознакомлении учащихся с примерами решения задач координатным или векторно-координатным методом, в использовании формул расстояния между точками, если отказаться от координатно-векторного метода. Одновременное введение традиционно-синтетического и координатного методов в начале курса может быть обеспечено применением аксиоматически смешанного типа, причем неизбежно избыточной. Аксиоматику, в этом случае, следует рассматривать как инструмент рационализации логико-математической системы учебника.

1.1Роль аксиом в построении школьного курса геометрии.

Цель – сформировать базу для построения доказательств. Аксиомы ориентируются на изложение и традиционно-синтетической , и аналитической частей учебного курса. В качестве аксиом выбираются уже известные из пропедевтического курса факты, близкие к наглядным представлениям. Новым для учащихся в них является предельно точный математический язык, на котором формируются. Приведение аксиом в начале курса означает систематизацию ранее известных знаний и дополнение их новыми знаниями.

Дидактические формы приведения аксиом могут быть различными. В учебнике Погорелова использовано неформальное введение, при котором приводится немало аксиом, но выделяются и формируются только те из них, которые систематически используются в дальнейшем изложении.

Приводятся аксиомы принадлежности, измерение отрезков и углов, откладывание отрезков и углов, существование треугольника, равного данному, параллельность. Наличие аксиом измерения упростило введение меры для отрезков и углов. Аксиома откладывания отрезков и углов позволила строго доказать признаки равенства треугольника.

1.2. Методика ознакомления учащихся с аксиомами в курсе.

Вводятся аксиомы неформально, т.е. первоначально вместо слов “аксиома”, “теорема”, “доказательство” используются “основное свойство”, “свойство”, “объяснение”. Сами термины вводятся в *** “Основные свойства простейших геометрических фигур”, когда учащиеся приобретут некоторый опыт применения аксиом в доказательствах.

Например, учащимся предлагаются отдельные предложения, после ознакомления с которыми они должны ответить на вопросы, в формулировке которых используются термины: “основное свойство”, “свойство”, “что такое…”, “какая фигура называется…?”

  1. Через любые две точки можно провести прямую, и только одну. Назовите основное свойство прямой.

  2. Две различные прямые либо не пересекаются, либо пересекаются в одной точке.

  3. Отрезком AB называется часть прямой a, точками которой являются все точки х этой прямой, лежащие между А и В. Точки А и В называются концами отрезка. Что называется “отрезком АВ”? Какая фигура называется отрезком?

  4. Два отрезка называются равными, если они имеют одинаковую длину.

  5. Треугольники равны, если у них соответствующие стороны и соответствующие стороны углы равны.

Рассмотрим методику изучения основных свойств.

  1. Основные свойства принадлежности.

1,а) Какова бы ни была прямая, существуют точки, принадлежащие прямой.

1,б) Через любые две точки можно провести прямую, и только одну.

Наглядное введение аксиом сопровождается логическим анализом их формулировок, необходимый для выяснения точного математического смысла каждой аксиомы. Анализ поправляется вопросами:

О каких геометрических фигурах говорится в основном свойстве 1,а)? Что именно говорится о прямых и точках? Сколько утверждений сформулировано в основном свойстве 1,а)? Сформулируйте их по отдельности. Какими другими словами “какова бы ни была прямая”? (“Для любой прямой” и “для каждой прямой”)

Закрепление практических навыков построения прямых и точек и усвоение соответствующей математической терминологии могут быть осуществлены с помощью математического диктанта:

  1. Постройте прямую а. Отметьте точки А и В, принадлежащие прямой а. Постройте С и Д, не принадлежащие прямой а.

  2. Постройте две пересекающиеся прямые c и d. Обозначьте буквой А точку пересечения этих прямых. Постройте точку В, принадлежащую прямой с, но не принадлежащую прямой d. Отметьте точку С, принадлежащую прямой d, но не принадлежащую прямой с.

  1. Основные свойства расположения.

2,а) Из трех точек на прямой одна, и только одна, лежит между двумя другими.

2,б) Прямая разбивает плоскость на две полуплоскости. Если концы какого-нибудь отрезка принадлежат одной полуплоскости, то отрезок не пересекается с прямой. Если концы отрезка принадлежат разным полуплоскостям, то отрезок пересекается с прямой.

Методическая схема введения аксиом:

  1. ввести аксиому на наглядной основе;

  2. сформулировать аксиому;

  3. выполнить логический нализ формулировки аксиом;

  4. провести математический диктант.

  1. Основные свойства измерения отрезков и углов.

3,а) Каждый отрезок имеет определенную длину, большую нуля. Длина отрезка равна сумме длины частей, на которые он разбивается любой своей точкой.

3,б) Каждый угол имеет определённую длину, большую нуля. Развёрнутый угол равен . Градусная мера угла равна сумме градусных мер углов, на которые он разбивается любым лучом, проходящим между его сторонами.

  1. Основные свойства откладывания отрезков и углов.

4,а) На любой полупрямой от её начальной точки можно отложить отрезок заданной длины, и только один.

4,б) От любой полупрямой в заданную полуплоскость можно отложить угол с заданной градусной мерой, и только один.

4,в) Каковы бы ни были треугольник и полупрямая, существует треугольник, равный данному, у которого первая вершина лежит в начале полупрямой, вторая – на полупрямой, а третья – в заданной полуплоскости относительно полупрямой и её продолжения.

Конкретно-индуктивным методом следует пользоваться лишь при изучении трудных для понимания аксиом. Рассмотрим один из вариантов введения аксиомы 4,в).

Начертим: , полупрямую ; отметим полуплоскость относительно .(полупрямой и её продолжения)

Вопрос: Можно ли построить , равный , который бы распологался следующим образом:

а) вершина совмещалась бы с началом полупрямой ;

б) вершина лежала бы на полупрямой ;

в) вершина лежала бы в заданной полуплоскости относительно полупрямой и её продолжения?

будем “строить” с помощью картонной модели . Построение направляем вопросами:

Что дано?( , полупрямая , полуплоскость); Что требуется построить? Каким четырём условиям должен удовлетворять ? Покажите, как можно построить такой с помощью нашей модели. После построения делаем вывод.

5) Основное свойство параллельных прямых.

Через точку не лежащую на данной прямой, можно провести на плоскости не более одной прямой, параллельной данной.

Использованная методическая форма приведения аксиом в учебнике Погорелова впервые была дана в учебнике Киселёва, а именно:

Аксиомы формулируются, но без внешнего подчеркивания формально-логического аспекта(они не нумеруются, не сообщаются названия групп). Формально-логический аспект не подчеркивается и в первых доказательствах. Непосредственные ссылки на аксиомы в этих доказательствах не делаются(они подразумеваются и при необходимости в устном изложении на уроке могут быть сделаны). Такому приёму свойственны неформальный стиль изложения и активное обращение к наглядности в первых доказательствах. Ссылки в доказатьльствах появляются после изучения признаков равенства треугольников. Подобная “маскировка” аксиом позволяет на первый план выдвинуть наглядно-геометрическую(содержательную) сторону доказательств, которые при этом тесно связываются с возможными интуитивными рассуждениями учащихся.

В учебнике Погорелова, в отличии от приведенного изложения по Киселёву, предпринята попытка формализации начала курса(чёткое выделение аксиом, ссылок в первых доказательствах)

34. Методика введения понятий и теорем в курсе геометрии.

Ряд математических понятий является неопределенным. В учебнике Погорелова к ним отнесены: точка, прямая, точка принадлежащая прямой; “точка В лежит между точками А и С”; “полуплоскость”, “длина отрезка”, “мера угла”, “отложить отрезок(угол) заданной меры”. Свойства неопределяемых понятий описываются аксиомами. Все остальные понятия – определяемые.

Отметим особенности некоторых определений:

1)отрезок определяется таким образом, что концы ему не принадлежат; в связи с этим нельзя использовать обозначение с помощью квадратных скобок; 2) полупрямая определяется т.о., что начальная точка ей не принадлежит; 3) угол определяется так, что вершина угла не принадлежит ему; 4) вершины треугольника (но определённого) принадлежат ему:

“Треугольником называется фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки - сторонами”.

“Углом называется фигура, которая состоит из точки - вершины угла – и двух различных полупрямых, исходящих из этой точки - стороны угла”.

Одним из центральных понятий для всего курса геометрии является понятие равных треугольников. В учебнике Киселёва равенство треугольников определяется с помощью положения. В пособии Погорелова А.В. сразу вводится общие понятия равенства фигур (с помощью перемещения). Определение равенства треугольников, по учебнику Погорелова (первые издания) для школьной практики новые, т.к.

“Треугольники и называются равными, если у них .” Как видно из этого определения, речь идет о равенстве не просто каких-либо двух треугольников, а треугольников, между которыми установлено соответствие: , по этой причине, например, равенство = может выполняться, но для “тех же” треугольников равенство: = может оказаться несправедливым. ”

В действующем пособии Погорелова А.В. используется следующее определение равенства треугольников:

“Треугольники называются равными, если у них соответствующие углы равны. При этом соответствующие углы должны лежать против соответствующих сторон”.

35. Методическая схема изучения признаков равенства треугольников.

Систематический курс геометрии начнем изучать в 7 классе со знакомства с основными свойствами простейших геометрических фигур, которые сформулированы в виде аксиом.

№ 47, стр.23

АС и ВС пересекаются, т.е. точка В лежит в одной полуплоскости, а точка А – в другой (?)

Точка В1 (АС) и лежит между точками А и С

Т очка А1 (ВС) и лежит между точками В и С

Рассмотрим прямую (АА1), тогда точки А и С принадлежат разным полуплоскостям, т. к. отрезки АС и ВС пересекаются. Поэтому точки В и В1 (т.к. В1 лежит между С и А) лежат в разных полуплоскостях и, следовательно, АА1 ВВ1

При решении используется понятие полуплоскости и аксиома IV (см. страница 8)

После изучения §1 учащимся даются понятия: аксиомы, теоремы, приводятся простейшие формы доказательств. (прочитать пункт 13 «аксиомы», страница 19)

№ 22 § 2, страница 32

Воспользуемся т. 1.1. (стр.17), согласно которой, из того что пересечена одна из сторон ∆ АВС (СА), прямая пересечет еще одну из оставшихся двух.

Рассмотрим ДОА. Если ДОА < АОВ, то луч ОД лежит между лучами АО и ОВ и, следовательно, пересекает отрезок АВ.

Если ДОА > ВОА, то луч ОД пересечет отрезок ВС (это связано

Следующими условиями: ВОА < ДОА и луч ОД лежит между лучами ОС и ОВ.

3.1 Методика изучения признаков равенства треугольников.

Изложение вопросов о равенстве треугольников во многом зависит от выбора определения равных треугольников. В учебнике Погорелова А.В. приводится гильбертовское определение равенства треугольников, которое требует выполнения шести равенств: трех для соответственных сторон треугольников и трех для соответственных углов этих треугольников. (смотри определение равенства на стр. 14)

Рассмотрим еще один вариант изложения темы равные треугольники:

  1. Для равенства двух треугольников потребуем (по определению) равентсов трех соответствующих сторон этих треугольников;

  2. В качестве аксиомы примем следующие утверждения: «Если две стороны и угол, заключенный между ними одного треугольника соответственно равны двум сторонам и углу заключенному между ними, другого треугольника, то такие треугольники равны».

Такой подход позволяет не доказывать третий признак равенства треугольников (это предусмотренно в 1. ) и I признаках равенства треугольниках (это аксиома), что приводит к сокращению теоретического материала и упрощению логической структуры темы «Равенство треугольников», позволяет кратчайшим путем ввести один из основных методов традиционно-синтетической геометрии – метод равных треугольников.

3.2 Методика изучения первого признака равенства треугольников. Методическая схема по Погорелову А.В.:

  1. Построить два треугольника, у которых равны две пары соответствующих сторон и углы, заключенные между ними;

  2. На основании полученного рисунка сформулируйте теорему записать ее условие и заключение;

  3. Сообщить идею доказательства;

  4. Сообщить план доказательства;

  5. Провести доказательство с четким выделением его шагов;

  6. Осуществить закрепление его доказательства;

  7. Рассмотреть с учащимися задачи на примере признака.

Итак, пусть по сторонам В, С и углу А с помощью транспортира и линейки построено два треугольника: ∆ АВС и ∆ А1В1С1

Что можно сказать о ∆ АВС и ∆ А1В1С1 ?

После **** о том, что эти треугольники равны, формулируем теорему. Выясняем: что дано в этой теореме, а что надо доказать. Рядом с рисунком 1 ***** краткую запись теоремы:

Дано: АВ =А1В1; АС=А1С1; А = А1

Доказать: ∆ АВС = ∆ А1В1С1

Сообщаем ученикам идею доказательства: рассмотреть третий ∆ А1В2С2, который: 1. равен ∆ АВС и расположен таким образом, что 2. его вершина В2 лежит на полупрямой А1В1; 3. вершина С2 находится в той же полуплоскости относительно прямой А1В1, в которой лежит вершина С1.

Теорема будет доказана, если установлено, что ∆ А1В2С2 совпадает с ∆ А1В1С1.

Составляем план доказательства:

    1. Рассмотрим ∆ А1В2С2, о котором говорилось выше;

    2. Докажем, что вершина В2 совпадает с вершиной В1;

    3. Докажем, что луч А1С2 совпадает с лучом А1С1;

    4. Докажем , что вершина С2 совпадает с вершиной С1;

    5. Сделаем заключение о равенстве ∆ АВС и ∆ А1В1С1.

Приводим краткую запись доказательства на доске (оно выполняется учителем по ходу изложения, записывать доказательство в тетрадях не нужно),

1) ∆ А1В2С2 = ∆ АВС аксиома IV3

2) т.к. А1В1 = А1В2, то В2 совпадает с В1 аксиома IV1

3) т.к. В1А1С1 = В2А1С2, то лучи А1С2 и А1С1 совпадают

аксиома IV2

4) т.к. А1С1 = А1С2, то точки С2 и С1 совпадают аксиома IV1

5) ∆ А1В2С2 и ∆ А1В1С1 совпадают п.п. 2,4

6) ∆ АВС = ∆ А1В1С1 п.п. 5,1

Вопросы для закрепления

  1. Как был выбран ∆ А1В2С2?

  2. Почему вершина В2 совпадает с вершиной В1 ?

  3. Зачем нужно доказывать совпадения лучей А1С2 и А1С1 ?

  4. Почему вершина С2 совпадает с вершиной С1 ?

  5. Почему делается вывод о равенстве ∆ АВС и ∆ А1В1С1

Рассмотрим еще одну методическую схему изучения этого признака:

  1. рассмотреть решение ряда подготовительных задач;

  2. доказать первый признак рав-ва треугольников.

Подготовительные задачи:

  1. отрезки А1В1 и А1В2 равны отрезку АВ и отложены на полупрямой А1В1 . Что ещё можно сказать о расположении отрезков А1В1 и А1В2 ?

  2. Углы В1А1С1 и В1А1С2 равны углу А. Что можно сказать о расположении углов В1А1С1 и В1А1С2 ? Что можно сказать о расположении лучей А1С1 и А1С2, если они находятся в одной полуплоскости относительно прямой А1В1?

  3. Треугольники А1В1С1 и А1В2С2 равны, вершина В2 лежит на полупрямой А1В1, вершина С2 лежит в одной полуплоскости (относительно прямой А1В1) с вершиной С1. Докажите, что эти треугольники совпадают, т.1. вершина В2 совпадают с вершиной В1, вершина С2 – с вершиной С1.

Рассмотренная первой методическая схема доказательства основана на применении репродуктивного метода обучения и он наиболее эффективен при изучении третьего признака равенства треугольников, наиболее сложного.

Схема решения задач па данной теме:

    1. ученики читают задачу один – два раза, выполняют рисунок, записывают условие и требования задачи. Рассказать о требованиях к построению чертежей при решении задач по планеметрии.

    2. Учитель направляет разбор задачи вопросами: “Что дано в задаче?”, “Что говорится о таком – то треугольнике?”, “Что ещё дано?”, “Что требуется выполнить в задаче?”, “С чего начнем выполнение рисунка?”, “Что ещё надо нарисовать?” и т. д.

    3. Далее приступаем к поиску решения задачи:

Рассмотрим некоторые задачи. №5, §3, стр.45

Дано:

Доказать:

Доказательство:

У данных треугольников есть по одной равной паре соответствующих сторон и одному равному углу прилежащему к этой стороне. Для док-ва рав-ва треугольников по II признаку следует найти ещё пару равных углов - как вертикальные по II признаку рав-ва треугольников.

№32, §3, стр.47 Дано: А, В, С, Д лежат на одной прямой;

Доказать:

Доказательство:

1) ;

2) - по I признаку равенства треугольников;

3) ;

4) - по I признаку равенства треугольников;

№39, §3, стр.48

Дано:

Доказать:

Доказательство:

1) (по условию); (по условию); - по III признаку равенства треугольников;

2) ;

3) - по I признаку равенства треугольников;

4) и - по III признаку равенства треугольников;

38. Методика изучения параллельности прямых и плоскостей.

Содержание: определения параллельных и скрещивающихся прямых в пространстве, теорема о существовании и единственности прямой, проходящей через данную точку параллельно данной прямой, транзитивность параллельности прямых, параллельность прямой и плоскости (определение и признак), параллельность плоскостей (определение и признак), изображение пространственных фигур на плоскости.

Наряду с обычными целями обучения геометрии здесь большую роль играет цель формирования у учащихся пространственного представления и воображения.

Методика изучения определения параллельных и скрещивающихся прямых построена с помощью логической операции отрицания: “Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются”. “Прямые, которые не пересекаются и не лежат в одной плоскости, называются скрещивающимися”. Точный смысл понятий: “прямые не пересекаются”, “прямые не лежат в одной плоскости” может быть получен с помощью операции отрицания понятий “прямые пересекаются”, “прямые лежат в одной плоскости”.

39. Методическая схема:

  1. подвести учащихся к теореме, сформулировать ее;

  2. выполнить рисунок, краткую запись теоремы;

  3. сообщать общую идею теоремы;

  4. привести план доказательства;

  5. предоставить учащимся возможность самостоятельно осуществить док-во;

  6. осуществить доказательство (ученик);

  7. закрепить доказательство путем его воспроизведения;

  8. применить теорему к решению задач.

Подведение учащихся к теореме: на стол положим спицу а1, вторую спицу положим так, чтобы она была параллельна спице а1.

Вопрос: что можно сказать о взаимном расположении спицы а и поверхности стола?

После опыта задается вопрос: Какую теорему можно сформулировать?

Идея доказательства: (после выполнения рисунка и краткой записи теоремы).

Выполним доп. построение: через параллельные прямые а и а1 проведем плоскость 1.

Док-во от противного:

Группа 131

1 a

a1

\ A

Учтем, что все общие точки плоскостей и 1 должны принадлежать прямой а1.

План доказательства:

  1. проводим плоскость 1;

  2. делаем допущение, что а не параллельна ;

  3. рассмотрим точку А, точку пересечения прямой а и плоскости ;

  4. приходим к выводу, что прямые а и а1 пересекаются;

  5. противоречие;

  6. а//.

После проведения доказательства решим следующую задачу:

S

ППрямая соединительная линия 107 Группа 108 усть SABC тетраэдр. MKP- середины ребер SA, SB, SC.

M K Как располагаются прямые MK, KP, MP относительно ABC?

P MK -средняя линия ASB =>

A B MK //AB => MK//ABC.

Аналогично для др. прямых.

41. Содержание: определения: перпендикулярных прямых, перпендикулярных прямой и плоскости, перпендикуляра к плоскости, расстояние от точки до плоскости, наклонной, прямоугольной проекции наклонной, перпендикулярных плоскостей, теоремы о перпендикулярных прямых, признак перпендикулярности прямой и плоскости, теорем о связи между параллельностью и перпендикулярностью прямых и плоскостей в пространстве, теорема о трех перпендикулярах, теорема о перпендикулярных плоскостях.

Т.к. в учебнике Погорелова не вводится понятие о перпендикулярных скрещивающихся прямых то: пряма а, пересекающая плоскость , называется перпендикулярной к плоскости , если она перпендикулярна к любой прямой в плоскости , проходящей через точку пересечения прямой а с плоскостью .

Определения, приведенные в этой теме, относятся к генетическим (конструктивным), поэтому при их изучении используют методическую схему, определенную в “2” для параллельного проектирования. Согласно определения к плоскости проводим прямую, кот. пересекает ее в некоторой точке А. В этой плоскости найдется прямая, проходящая через точку пересечения.

Если эта прямая перпендикулярна к данной прямой, то ее называют перпендикулярной к плоскости. По рисунку куба попросить учащихся обозначить ребра куба, перпендикулярные к плоскостям AA1BB1, ABCD, D1C1CD, и назвать плоскости, которым перпендикулярны ребра C1D1, A1D1, BC.

Группа 162 В1 C1

B C

A1 D1

A D

Признак перпендикулярности:

Если прямая, пересекающая плоскость, перпендикулярна к двум прямым в этой плоскости, то она перпендикулярна к плоскости.

Сформулировать эту теорему учащиеся смогут сами, используя приведенную выше задачу (например, ребро А1D1 перпендикулярно к плоскости DD1C1 => А1D1DD1 и А1D1D1С1 т.е. двум прямым лежащим в этой плоскости).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]