Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курсовая микробиологические методы.doc
Скачиваний:
5
Добавлен:
19.09.2019
Размер:
148.48 Кб
Скачать

Глава 3. Области применения биоиндикаторов

3.1. Оценка качества воздуха

От загрязнения воздуха страдают все живые организмы, но особенно растения. По этой причине растения, в том числе низшие, наиболее пригодны для обнаружения начального изменения состава воздуха. Соответствующие индексы дают количественное представление о токсичном эффекте загрязняющих воздух веществ.

Лишайники являются симбиотическими организмами. Многими исследователями показана их пригодность для целей биоиндикации. Они обладают весьма специфическими свойствами, так как реагируют на изменение состава атмосферы, обладают отличной от других организмов биохимией, широко распространены по разным типам субстратов, начиная со скал и кончая корой и листьями деревьев, удобны для экспозиции в загрязненных районах.

Выделяют четыре основные экологические группы лишайников: эпифитные  растущие на коре деревьев и кустарников; зпиксильные — растущие на обнаженной древесине; эпигейные— на почве; эпилитные — на камнях. Из них наиболее чувствительны к загрязнению воздуха эпифитные виды. С помощью лишайников можно получать вполне достоверные данные об уровне загрязнения воздуха. При этом можно выделить группу химических соединений и элементов, к действию которых лишайники обладают сверхповышенной чувствительностью: оксиды серы и азота, фторо- и хлороводород, а также тяжелые металлы. Многие лишайники погибают при невысоких уровнях загрязнения атмосферы эти ми веществами. Процедура определения качества воздуха с помощью лишайников носит название лихеноиндикации.

Оценку чистоты воздуха можно проводить с помощью высших растений. Например, голосеменные — отличные индикаторы чистоты атмосферы. Возможно также изучение мутаций в волосках тычиночных нитей традесканции. Французские ученые подметили, что при увеличении в воздухе окиси углерода и окислов азота, выбрасываемых двигателями внутреннего сгорания, окраска ее тычиночных нитей меняется от синей к розовой. Последствия нарушений в индивидуальном развитии растений могут быть выявлены также по частоте встречаемости морфологических отклонений (фенодевиантов), величине показателей флуктуирующей асимметрии (отклонение от совершенной билатеральной и радиальной симметрии), методом анализа сложноорганизованных комплексных структур (фрактал-анализ). Уровни любых отклонений от нормы оказываются минимальными лишь при оптимальных условиях и возрастают при любых стрессирующих воз действиях. [8]

3.2. Оценка качества воды

Для биологической индикации качества вод могут быть использованы практически все группы организмов, населяющие водоемы: планктонные и бентосные беспозвоночные, простейшие, водоросли, макрофиты, бактерии, дафнии и рыбы. Каждая из них, выступая в роли биологического индикатора, имеет свои преимущества и недостатки, которые определяют границы ее использования при решении задач биоиндикации, так как все эти группы играют ведущую роль в общем круговороте веществ в водоеме. Организмы, которые обычно используют в качестве биоиндикаторов, ответственны за самоочищение водоема, участвуют в создании первичной продукции, осуществляют трансформацию веществ и энергии в водных экосистемах.

Дафнии – это мелкие рачки (размеры тела взрослых особей от 0,6 до 6 мм). Они населяют все типы стоячих континентальных водоемов, встречаются также во многих реках с медленным течением. В лужах, прудах и озерах часто имеют высокую численность и биомассу. Дафнии — типичные планктонные рачки, большую часть времени проводящие в толще воды.

Присутствие в воде пестицидов и тяжелых металлов в концентрациях, близких к ПДК, можно выявлять с помощью дафний и плесневых грибков. Нижегородские химики предложили новую методику биотестирования, которая объединяет химический и биологический подходы. С помощью пресноводных рачков дафний они выявляют в воде фосфорорганические пестициды. Пробу воды делят на две порции. В одной пестициды переводят в нетоксичную для дафний форму с помощью определенных реагентов. Вторая порция воды – контрольная. Если в контроле дафнии погибают, а в обработанной реагентами части пробы живут, то можно говорить о наличии в пробе токсичных веществ, причем именно фосфорорганических пестицидов (ведь в воде может быть и другой токсикант). Предел группового обнаружения пестицидов этим методом составляет 0,0006 мг/л, то есть на уровне ПДК (0,0005 мг/л для дихлофоса). Если же, как предлагают ученые, повысить температуру раствора с 20 до 35-36'С (критическая температура для жизни дафний), то их чувствительность к токсикантам повысится в десять раз, а время анализа сократится в 3-7 раз (в теплой воде дафнии погибнут раньше и от меньшей доли яда). Аналогичный химико-биологический метод ученые разработали и для определения в воде таких исключительно токсичных металлов, как ртуть, кадмий, медь, цинк, бериллий и др. Ученые выяснили также, что для анализа можно использовать способность биологически активных веществ не только подавлять, но и стимулировать жизнедеятельность живых существ. Например, традиционно о содержании в воде катионов железа, меди и цинка судят по тому, как раствор угнетает рост определенного плесневого гриба. Нижегородцы установили, что в очень низких концентрациях (меньше 0,0001 мг/л) те же ионы, наоборот, стимулируют рост этого грибка. Таким образом, чувствительность определения повышается в 10-120 раз (в зависимости от конкретного металла), а поскольку грибок концентрирует и накапливает металлы, то о количестве примесей металлов в воде можно судить по количеству их в массе грибка. Так можно не только определять ничтожно малые количества примесей, но и очищать растворы от микропримесей некоторых металлов.