Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-14.docx
Скачиваний:
3
Добавлен:
17.09.2019
Размер:
2.56 Mб
Скачать

[Ред.]Кеп-незалежна ініціація

Тоді як в більшості випадків еукаріотична трансляція вимогає наявності кепа на 5'-кінці мРНК, деякі вірусні і клітинні мРНК обходять кеп-залежний механізм за рахунок ініціації трансляції на певних послідовностях внутрі молекули РНК.

Найкраще дослідженим (але далеко не єдиним) прикладом кеп-незалежної трансляції в еукаріотах є так звана «внутрішня ділянка входу рибосоми» (англ. Internal Ribosome Entry Site або IRES). На відміну від кеп-залежного механізму, кеп-незалежний механізм також не вимагає сканування рибосомою від 5'-кінця рибосоми до стартового кодону. Рибосома можу бути доставлена до стартової ділянки IRIS за допомогою ITAFів, (IRES trans-acting fantors), що дозволяють обходити необхідність сканування від 5'-кінця РНК.

Цей метод трансляції був знайдений відносно недавно, і є необхідним за умовах, які вимагають трансляції певних мРНК в стресових умовах, коли загальна ефективність трансляції зменшена. Приклади включають фактори, що викликають апоптозімуноглобуліни, деякі фактори росту. Крім того, цим механізмом інколи користуються віруси[1].

[Ред.]Елонгація

Елонгація трансліції еукаріотів дуже подібна до елонгації трансляції прокаріотів. Основними факторами елонгації є такі:

  • eEF-1, чиї α і βγ субодиниці відповідають прокаріотичним факторам EF-TU і EF-TS, відповідно;

  • eEF-2, що відповідає прокаріотичниму фактору EF-G

[Ред.]Термінація

У еукаріотів існує лише один фактор вивільнення, eRF, замість трьох факторів прокаріотів. Проте, загалом процес термінації подібний до процесу термінації прокаріотів[2].

Біога́з — різновид біопалива. Добувають із відходів тваринництва, харчової промисловості, стічних вод та твердих побутових відходів (відсортованих, без неорганічних домішок, та домішок неприродного походження). Тобто застосовувати можна будь-які місцеві природні ресурси.

Зміст

  [сховати

  • 1 Утворення

  • 2 Завалочний газ

  • 3 Екологія

  • 4 Посилання

  • 5 Література

[ред.]Утворення

Сам процес утворення газу - це так зване метанове бродіння. Його суть полягає в анаеробному бродінні (без доступу повітря), яке відбувається внаслідок життєдіяльностімікроорганізмів і супроводиться рядом біохімічних реакцій. Власне сам процес утворення газу (біогазу) складається з двох етапів: перший — розщеплення мікроорганізмами біополімерів до мономерів, другий — переробка мономерних біомолекул мікроорганізмами.

Перша стадія досить енергетично невигідний процес, в її результаті вивільняється замало вільної енергії, якою могли б живитися мікроорганізми, тому для успішного проходження даного етапу потрібно підтримувати умови для успішного розвитку мікрофлори.

Другий етап — процес окиснення утворених мономерних молекул, звичайний природний окисно-відновний процес. Але за умов відсутності стандартного окисника даного процесу (кисню повітря) відбувається диспропорціонування за ступенями окиснення присутніх в молекулах атомів (сірка, азот та карбон). В результаті чого ми отримуємо бажаний метан (CH4), та гази-домішки, які вважаються не корисними, і навіть шкідливими: CO2, NH3, SH2.

Біогаз, одержуваний з відходів життєдіяльності тварин і птахів, може замінити в Україні 6 млрд. м3 природного газу, однак для його одержання необхідні значні інвестиції, строк окупності яких складає 4 - 5 років. Китай проектує через кілька років довести виробництво біогазу до 100—120 млрд. м³. Щорічні потреби споживання в Україні становлять 70 млрд м³ природного газу (2008 рік).

[ред.]Завалочний газ

Одним з перспективних джерел енергії є завалочний газ, що утворюється в результаті розкладання органічної частини твердих побутових відходів в анаеробних умовах, що виникають невдовзі після їхнього санітарного поховання. Тільки в містах утворюється 400—450 млн. т твердих побутових відходів на рік. Вихід газу з теплотою згоряння 17-20 МДж/м3 складає 100 м3/т твердих побутових відходів протягом 20 років зі швидкістю 5 м3/т у рік. Потенціал завалочного газу в країнах Європейського Союзу наближається до 9 млрд. м3/рік, у США — 13 млрд. м3/рік, в Україні — близько 1 млрд. м3 на рік.

[ред.]Екологія

Виробництво біогазу дозволяє скоротити кількість викидів метану в атмосферу. Метан вносить серйозні корективи до стану атмосфери Землі. Формується так звана «лінза» зі всіляких газів і особливо з'єднань вуглецю, яка перешкоджає виходу тепла в космічний простір. Таким чином, тепло концентрується в самій атмосфері, і на планеті стає все спекотніше і спекотніше. В цьому процесі метан має в 21 раз сильніший негативний вплив, ніж двоокис вуглецю. Таким чином виробництво біогазу і подальше його використання для виробництва тепла і електроенергії є найбільш ефективним засобом боротьби з глобальним потеплінням. Біомаса, яка залишається після переробки відходів може використовуватись в сільському господарстві як добриво. Причому такі добрива значно краще і ефективніше впливають на ґрунт, на розвиток рослин та на ґрунтові води, на відміну від штучних добрив.

Біотехноло́гія (Βιοτεχνολογία, від грец. bios — життя, techne — мистецтво, майстерність і logos — слово, навчання) — використання живих організмів і біологічних процесів у виробництві. Біотехнологія — міждисциплінарна галузь, що виникла на стику біологічниххімічних і технічних наук. З розвитком біотехнології пов'язують вирішення глобальних проблем людства — ліквідацію недостачі продовольства, енергії, мінеральних ресурсів, поліпшення стану охорони здоров'я і якості навколишнього середовища.

Хоча біотехнологія як окрема наука та галузь виробництва

вважається наймолодшою з усіх відомих, її формування відбувалося

разом з розвитком людського суспільства.

Серед етапів розвитку біотехнології можна виділити 4, які

широко розкривають сутність становлення цієї науки.

Перший період, як і у всіх інших наук – це емперічний період (від

грец. «emperikos” -дослідний) або доісторичний – найдовший (6000 р

до н.е. + 2000 р. н.е.). У цей період відбувається використання методів та способів, які ми

зараз відносимо до біотехнологічних:

• Виготовлення хлібу;

• Виготовлення пива (виготовляли шумери - перші жителі

Месопотамії сучасної території Іраку. Набутий досвід передавався

та розповсюджувався серед ассірійців, вавилонян, єгиптян та

індійців);

• Виготовлення оцту;

• Отримання медових алкогольних напоїв;

• Перша дистиляція у виноробстві (12стр);

• Виготовлення горілки з хлібних злаків (16стр);

• Виготовлення шампанського (18 стр);

• Отримання кисломолочних продуктів;

• Отримання квашених овочів та капусти;

• Силосування кормів.

Другий період - етіологічний (від грец. «aitia»- причина) Він тривав

1856-1933рр.

Серед досягнень другого періоду слід виділити: -1856р. - Г. Мендель відкрив закони домінування ознак та ввів поняття

одиниці

спадковості у вигляді дискретних факторів, які передаються

від батьків нащадкам, пізніше названих генами.

-1859р. - роботи Луї Пастера:

ƒ встановлення мікробної природи бродіння;

ƒ доказ можливості життя у без кисневих умовах;

ƒ виготовлення рідкого поживного середовища.

-1869 р.- швейцарський біохімік Йоганн Фрідріх Мішер виділив

«нуклеїн» (ДНК) з лейкоцитів.

-1881р. - роботи Р. Коха:

ƒ метод культивування бактерій на стерильних шматочках

картофеля та на агарізованих середовищах внаслідок чого

стало можливим отримання чистих культур з наступним

цільовим використанням (бродіння, окислення).

-1883р. – І. Мечников розробив теорію клітинного імунітету

-1892р. - Д. Івановський відкрив віруси.

На цей період припадає зародження капіталізму, тому швидко і

активно розвивається виробництво пресованих дріжджів, ацетону,

бутанолу, лимонної та молочної кислот. У Франції працюють надвиготовленням біоустаткування для мікробіологічного очищення

стічних вод.

3.Третій період - біотехнічний 1933-1972рр.

Усі прогресивні досягнення того часу найшли своє застосування

у біотехнології.

-1933р. – А. Клюйвер та А. Перкін запропонували основні технічні

прийоми глибинного культивування пліснявих грибів та методи

оцінки продуктів культивування (опублікували роботу «Методи

вивчення обміну речовин у пліснявих грибів»). Розпочалося

впровадження у біотехнологію великомасштабного герметичного

обладнання, яке забезпечує стерильні умови культивування.

-1936р. – конструйовано та впроваджено у практику біореактор

(ферментер, апарат-культиватор).

-1939-1945рр. – розвиток промислового обладнання для

виробництва антибіотиків.

-1943р. – виготовлення пеніциліну у промислових масштабах.

-1939р. – А. Тізеліус – розробив теорію електрофорезу.

-1942р.- М.Дельбрюк і Т. Андерсон вперше побачили віруси у

електронному мікроскопі.

-1948р. – народження теля від штучно заплідненої корови. -1949р. – Дж. Ледерберг відкрив процес кон’югації у Е.соli.

-1950р. – Ж. Моно розробив теоретичні основи безперервного

керованого культивування мікробів.

-1950р. – відкриття Чаргаффом нуклеотидного складу ДНК

-1951р. – У. Хейс описав плазміду як позахромосомний фактор

спадковості.

-1953р. - амеріканський біолог Джеймс Уотсон та британський

молекулярний біолог Френсіс Крик визначили структуру подвійної

спіралі ДНК, що, у свою чергу, привело до нових відкриттів

принципів роботи ДНК на молекулярному рівні.

-1959р. – японські вчені відкрили плазміди антибіотикостійкості

(R-фактор) у дизентерійної бактерії.

-1960р.- С.Очоа і А. Корнберг виділили білки-ферменти які можуть

«зшивати» нуклеотиди у полімерні ланцюги. Була виділена ДНК-

полімераза з кишкової палички.

-1961р. – М.Ніренберг прочитав перші три букви генетичного коду

для амінокислоти фенілаланін.

-1962р. – Х. Корана синтезував хімічним способом функціональний

ген.

-1969р. – М.Беквіт і С.Шакіро виділили ген lac-оперона у Е.соli.

-1970р. - Виділили фермент рестріктазу. Проте, ці відкриття були досягненнями лише у генетиці,

мікробіології та біохімії і тільки у 1972 році науковці

запропонували новаторський підхід об’єднання біохімії з

технологіями. У цьому році амеріканці Герберт Бойер, Пол Берг і

Стенлі Коен розробили РЕКОМБІНАНТНУ ДНК, яка поєднала

ДНК людини та бактерії. Вчені винайшли спосіб перетворення

бактерій у «фабрики» по виготовленню таких важливих для

людини білків як інсулін та гормон росту.

Розпочався четвертий період – генотехнічний (від грец.

«genesis» - походження).

Цей період характеризується створенням нових методів

дослідження:

-1975р. – Г.Келер і Ц. Мільштейн описали метод отримання

моноклональних антитіл (опублікували у журналі «Nature»

статтю «Тривалопереживаючи культури гібридних клітин, які

секретують антитіла певної специфічності»).

-1977р. – М.Максам і У.Гілберт розробили метод аналізу

первинної структури ДНК шляхом хімічної деградації, а

Дж.Сенгер – шляхом полімеразного копіювання з використанням

термінуючи аналогів нуклеотидів.

-1981р. – дозволений до використання у США перший

діагностичний набір моноклональних антитіл. -1982р. - надійшов у продаж людський інсулін, отриманий від

клітин Е.соli, дозволено застосування рекомбінантних вакцин;

розроблені генно-інженерні інтерферони, фактор некротизації

пухлин, інтерлейкін-2, соматотропний гормон людини.

-1986р. – К.Мюлліс розробив метод полімеразноланцюгової

реакції.

-1988р. – розпочато широкомасштабне виробництво обладнання та

діагностичних або рів для ПЛР.

-1997р. - отримання клону тварини (вівця Доллі) з

диференційованої соматичної клітини.

Однією з важливих органічних кислот є оцтова кислота. Вона використовується при виробництві багатьох хімічних речовин, включаючи каучук, пластмаси, волокна і інсектициди. В минулому основну її частину добували з етанолу шляхом мікробіологічного окислення. Мікробіологічне перетворення етанолу йде за допомогою Acetobacter і Gluconobacter в аеробних умовах і тому не являється процесом бродіння. Перетворення етанолу в оцтову кислоту за допомогою бактерій економічно вигідним є лише при добуванні харчового оцту ( Сассон Альбер ).

Відомо, що термофільні бактерії мають властивість перетворювати целюлозу в оцтову кислоту тому є перспективними для використання їх в промисловому виробництві цієї речовини. Також можливо використовувати Acetobacter i Clostridium для синтезу її з СО2 і Н2.

Важливою також є молочна кислота. Її виробництво було одним з перших процесів з застосуванням часткової стерилізації середовищ нагріванням за участі мікроорганізмів з роду Lactobacillus bulgaricus i L. leischmanii (XIX ст.). Здійснювався цей мікроаерофільний процес при температурі 45-50 ºС. В ньому використовуються речовини, що містять крохмаль. Їх попередньо обробляють ферментами або за допомогою кислотного гідролізу.

Бактерії Lactobacillus bulgaricus зброджують лактозу, тому можна використовувати як субстрат молоко. Також для субстрату можна використати сахарозу (концентрація 12-18%, маса/об’єм). Процес конверсії іде 3-4 доби. При цьому виділяється СО2 і створюються напіванаеробні умови.

Описані також способи конверсії 1,2-пропандіолу в молочну кислоту. Такі мікроорганізми, як Arthrobacter oxydans, Fusarium solani, Alcaligens faecalis, утворюють L(+) ізомер молочної кислоти, а Lactobacillus leischmanii синтезують D-ізомер.

Молочну кислоту використовують як добавку до безалкогольних напоїв, фруктових соків, джемів і сиропів, есенцій, в медицині, для декальцифікації шкір в дубильній промисловості. L(+)-форму молочної кислоти полімеризують в полілактат, який застосовують для виробництва пластикових обгорток.

Лимонна кислота. У цієї кислоти приємний смак і її широко використовують в харчовій, фармацевтичній і косметичній промисловості. Оскільки ця речовина зв’язує метали, її використовують для їх очистки.

Процес виробництва лимонної кислоти проходить за допомогою ферментації при участі грибів. Налагоджено його вперше в 1843 році. Основні проблеми цього процесу спочатку були зв’язані з мікробним забрудненням. Виявилось, що процес можна вести при низьких рН і в таких умовах утримувати стерильність простіше. За 1-2 тижні при високих концентраціях цукру, вихід лимонної кислоти становив 60 %. В 1950 році було освоєно глибинне культивування. Відомо, що стабільний процес глибинної ферментації можливий лише в тому випадку, якщо він здійснюється у дві стадії: на першій йде ріст міцелію, а на другій – утворення лимонної кислоти. Для цього процесу використовується сировина: меляса, крохмаль, глюкозний сироп.

Наявність іонів металів в вихідному середовищі приводить до різкого падіння виходу лимонної кислоти. Їх осаджують за допомогою гексаціаноферату, пропусканням через іонообмінні смоли, а також для ліквідації їх шкідливої дії цих домішок використовують метанол і інші спирти. В 60-х роках були запропоновані процеси для виробництва лимонної кислоти за допомогою штамів Corynebacterium, Arthrobacter, Brevibacterium, Candida.

В промисловому виробництві в основному використовують Aspergillus niger, A. wentii. Надлишок продукції лимонної кислоти являється реакцією відповіді на недостачу фосфату, але при вираженій нестачі металів, лімітуючим фактором не обов’язково являється фосфат. Оптимум рН складає 1,7-2,0. В більш лужному середовищі проходить утворення помітних кількостей щавлевої та глюконової кислот. Таким чином, контроль за культуральним середовищем дозволяє обійти регуляторні системи обміну і створює оптимальний фон для утворення лимонної кислоти. Очевидно в цих умовах стимулюється гліколіз і забезпечується необмежене надходження вуглецю в реакції проміжного метаболізму.

В промисловому виробництві лимонної кислоти застосовується декілька варіантів процесу. Традиційним твердофазним варіантом являється процес Коджі. Він має багато спільного з поверхневою ферментацією. Глибинна ферментація є періодичною і безперервною. Безперервна дає найбільший вихід продукції, але його застосування в промисловості поки, що малоймовірно.

На першому етапі утворюється значна кількість продукту. На другому етапі ріст відсутній, а гранична кількість продукту залежить від концентрації біомаси. В кінці ферментації масу міцелію відокремлюють фільтруванням і промивають. Потім при рН<3,0 осаджують щавлеву кислоту в формі оксалату кальцію. Лимонну кислоту осаджують із рідкої фази в формі кальцієвої трьох заміщеної солі в комплексі з чотирма молекулами води. Осад відфільтровують, промивають і вільну кислоту отримують шляхом обробки сульфатом кальцію. Далі її очищають за допомогою активованого вугілля і іонообмінних смол. Можна також екстрагувати кислоту розчинником. (Бест Д., Химия и биотехнология. В кн. Биотехнология.)

Розроблений ряд процесів добування інших органічних кислот – глюконової, яблучної, виннокам’яної, саліцилової, янтарної, піровиноградної, коєвої. В сьогоднішніх умовах здебільшого, їх виробництво не вигідно економічно. D-глюконову кислоту добувають з глюкози за участю Aspergillus niger. В деяких країнах сходу для її виробництва використовують чайний гриб. Натрієва сіль глюконової кислоти використовується для вилучення металів. Оскільки в присутності їдкого натру вона може зв’язувати кальцій, то використовується в складі лужних препаратів для миття посуду. Кальцієві і залізовмісні солі глюконової кислоти застосовуються як пероральні і внутрівенні препарати в медицині, а чиста кислота – як миючий засіб в молочній промисловості.

Виннокам’яна кислота являється звичайно побічним продуктом виноробства. Її можливо дістати і шляхом мікробної трансформації 5-оксиглюконової кислоти. Штами, які здатні перетворювати глюкозу в 5-оксиглюконат через глюконат, можуть шляхом подальшої ферментації утворювати тартат. Для цього використовують мутанти Acetobacter i Gluconobacter. Солі винної кислоти (тартати) знаходять застосування в харчовій промисловості, але методи біотехнології в її виробництві звичайно не використовуються.

Яблучну кислоту можна добувати з фумарової в харчовій промисловості за допомогою Paracolobactrum. Також можна її отримувати з н-парафінів за допомогою дріжджів і з етанолу за участю Schisophyllum commune.

З нафталіну за допомогою бактерій можливо синтезувати саліцилову кислоту і інші його похідні. Більшість диких штамів бактерій (Pseudomonas. Corynebacterium і ін.) які розщеплюють нафталін, рідко виробляють саліцилат в концентрації більшій за 1%. Але шляхом відбору штамів і зміни середовищ можна збільшити вихід цієї речовини. Для збільшення виходу саліцилової кислоти необхідні іони різних металів. Відомо також, що ферментація регулюється продуктом, що накопичується, тобто видалення саліцилату з середовища приводить до подальшого утворення його бактеріями.

Білки́ — складні високомолекулярні природні органічні речовини, що складаються з амінокислот, сполучених пептидними зв'язками. В однині (білок) термін найчастіше використовується для посилання на білок, як речовину, коли не важливий її конкретний склад, та на окремі молекули або типи білків, у множині (білки) — для посилання на деяку кількість білків, коли точний склад важливий.

Зазвичай білки є лінійними полімерами — поліпептидами, хоча інколи мають складнішу структуру. Невеликі білкові молекули, тобто олігомери поліпептидів, називаються пептидами. Послідовність амінокислот у конкретному білку визначається відповідним геном і зашифрована генетичним кодом. Хоча генетичний код більшості організмів визначає лише 20 «стандартних» амінокислот, їхнє комбінування уможливлює створення великого різномаїття білків із різними властивостями. Крім того, амінокислоти у складі білка часто піддаються посттрансляційним модифікаціям, які можуть виникати і до того, як білок починає виконувати свою функцію, і під час його «роботи» в клітині. Для досягнення певної функції білки можуть діяти спільно, і часто зв'язуються, формуючи великі стабілізовані комплекси (наприклад, фотосинтетичний комплекс).

Функції білків в клітині різноманітніші, ніж функції інших біополімерів — полісахаридів і нуклеїнових кислот. Так, білки-ферменти каталізують протікання біохімічних реакцій і грають важливу роль в обміні речовин. Деякі білки виконують структурну або механічну функцію, утворюючи цитоскелет, що є важливим засобом підтримки форми клітин. Також білки грають важливу роль в сигнальних системах клітинклітинній адгезіїімунній відповіді і клітинному циклі.

Білки — важлива частина харчування тварин і людини, оскільки ці організми не можуть синтезувати повний набір амінокислот і повинні отримувати частину з них із білковою їжею. У процесі травлення протелітичні ферменти руйнують спожиті білки, розкладаючи їх до рівня амінокислот, які використовуються прибіосинтезі білків організму або піддаються подальшому розпаду для отримання енергії.

Молекули білків є лінійними полімерами, що складаються з α-L-амінокислот (які є мономерами цих полімерів) і, в деяких випадках, з модифікованих основних амінокислот (щоправда модифікації відбуваються вже після синтезу білка на рибосомі). Для позначення амінокислот в науковій літературі використовуються одно- або трьохбуквені скорочення. Хоча на перший погляд може здатися, що використання «всього» 20 основних типів амінокислот обмежує різноманітність білкових структур, насправді кількість варіантів важко переоцінити: для ланцюжка всього з 5 амінокислот воно складає вже більше 3 мільйонів, а ланцюжок з 100 амінокислот (невеликий білок) може бути представлений більш ніж у 10130 варіантах (для порівняння — кількість атомів у Всесвіті оцінюється приблизно у 1080). Поліпептидні ланжюжки завдовжки від двох до кількох десятків амінокислотних залишків зазвичай називають пептидами, при більшому ступені полімеризації — власне білками або протеїнами, хоча цей поділ вельми умовний.

При утворенні білка в результаті взаємодії α-аміногрупи (-NH2) однієї амінокислоти з α-карбоксильною групою (-СООН) іншої амінокислоти утворюються пептидні зв'язки. Кінці білка називають С- і N- кінцями (залежно від того, яка з груп кінцевої амінокислоти вільна: -COOH чи -NH2, відповідно). При природному синтезі білка на рибосомі, нові амінокислоти приєднуються до C-кінця, тому назва пептиду або білка дається шляхом перерахування амінокислотних залишків починаючи з N-кінця.

Послідовність амінокислот у білку відповідає інформації, що міститься в гені даного білка. Ця інформація представлена у вигляді нуклеотидної послідовності, причому одній амінокислоті відповідає одна або декілька послідовностей з трьох нуклеотидів — так званих кодонів. Те, яка амінокислота відповідає даному кодону в ДНК та мРНК (проміжній ланці біосинтезу білків), визначаєтьсягенетичним кодом, який може дещо відрізнятися у різних організмів.

Гомологічні білки (що виконують одну функцію і мають загальне еволюційне походження, наприклад, гемоглобіни) різних організмів мають в багатьох місцях ланцюжка різні амінокислотні залишки, які називають варіабельними, напротивагу консервативним, спільним залишкам. За ступенем гомології можна оцінити еволюційну відстань між таксонами, до яких належать всі організми

[ред.]Рівні структури білків

Детальніше: Структура білків

Основні рівні структурної організації білків

Окрім послідовності амінокислот поліпептиду (первинної структури), для функціонування білків украй важлива тривимірна структура, яка формується в процесізгортання білків (або фолдинга, від англ. folding). Ця структура утримується в результаті взаємодії структур нижчих рівнів. Тривимірна структура білків за нормальних природних умов називається нативним станом білка. Хоча чимало білків здатні згортатися та приймати нативний стан самостійно, завдяки властивостям свого поліпептидного ланцюжка, інші вимагають допомоги інших білків, молекулярних шаперонів. Виділяють чотири рівні структури білків[8]:

  • Первинна структура — пептидна або амінокислотна послідовність, тобто послідовність амінокислотних залишків у пептидному ланцюжку. Саме первинна структура кодується відповідним геном і найбільшою мірою визначає властивості сформованого білка.

  • Вторинна структура — локальне впорядковування фрагменту поліпептидного ланцюжка, стабілізоване водневими зв'язками і гідрофобними взаємодіями. Найпоширеніші типи вторинної структури білків включають[9]α-спіралі (спіраль, що має 4 залишки на виток, стабілізована водневими зв'язками між пептидними групами з кроком у 4 ланки) і β-листи (кілька зигзагоподібних поліпептидних низок, в яких водневі зв'язки утворюються між відносно віддаленими ділянками ланцюжка або між різними ланцюжками, а не між близько розташованими пептидними групами, як це має місце для α-спіралі). Інші елементи вторинної структури включають π-спіралі (спіралі з кроком водневих зв'язків у 3 ланки),  -спіралі (спіралі з кроком водневих зв'язків у 5 ланок), повороти, невпорядковані фрагменти та інші. Найпоширеніша єдина класифікація таких структур — номенклатура DSSP.

Приклади зображення тривимірної структури білків або їхніх фрагментів. Показаний білок — триозофосфатізомераза — складається з восьми α-спіралей, розташованих на зовнішній поверхні й восьми паралельних β-листів всередині (так звана структура αβ-бареля, від англ. barrel — «бочка»). Ліворуч — «паличкова» модель, із зображенням всіх атомів і зв'язків між ними. Кольорами позначені різні атоми. В середині — зображення елементів вторинної структури — α-спіралей і β-листів. Кольорами позначені типи елементів. Праворуч — контактна поверхня білка, на підставі ван дер Ваальсових радіусіватомів. Кольорами позначені електростатичні властивості поверхні.

  • Третинна структура — повна просторова будова цілої білкової молекули, просторове взаємовідношення вторинних структур одна до одної. Третинна структура загалом стабілізується нелокальними взаємодіями, найчастіше формуванням гідрофобного ядра, а також завдяки утворенню водневих зв'язків, солевих містків, інших типів іонних взаємодійдисульфідних зв'язків між залишками цистеїну.

До третинної структури зазвичай відносять і проміжні рівні між основними елементами вторинної структури та повною структурою білка — «надвторинну» структуру, що складається із структурних мотивів та доменів. Структурні мотиви — невеликі усталені поєднання кількох елементів вторинної структури, що мають схожу структуру, важливу для виконання білком певних функцій. Схожі структурні мотиви зазвичай виконують схожі функції, завдяки чому за ними можна передбачити функцію невідомого білка. Хоча структурні мотиви можуть бути аналогічними, частіше за все вони зберігаються в процесі еволюції видів. Домени — дещо більші елементи структури білка, що характеризуються стабілізацією незалежною від решти поліпептидного ланцюжка, і що часто виконують окрему функцію. В процесі еволюції елементи надвторинної структури можуть передаватися між генами, надаючи їм нові функції, таким чином існує набагато менше різновидів цих елементів, ніж різних білків. Процес передачі доменів можна здійснити і штучними методами генної інженерії, створюючи химерні білки.

  • Четвертинна структура — структура, що виникає в результаті взаємодії кількох білкових молекул, які в даному контексті називаютьсубодиницями. Повна структура кількох поєднаних субодиниць, що разом виконують спільну функцію, називається білковим комплексом.

Еукаріотичні гени, на відміну від бактеріальних, мають переривчасте мозаїчне будову. Кодуючі послідовності (Екзони) перемежовуються з некодуючими (інтрони). Екзон [від англ. ex (divssi) on - вираз, виразність] - ділянка гена, що несе інформацію про первинну структуру білка. У гені Екзони розділені некодуючими ділянками - інтрони. Інтрон (від лат. Inter - між) - ділянка гена, що не несе інформацію про первинну структуру білка і розташований між кодирующими ділянками - екзонами. У результаті структурні гени еукаріотів мають довшу нуклеотидну послідовність, ніж відповідна зріла іРНК, послідовність нуклеотидів в якій відповідає екзонів. У процесі транскрипції інформація про ген списується з ДНК на проміжну іРНК, що складається з екзонів і інтронів. Потім специфічні ферменти - рестріктази - розрізають цю про-іРНК по межах екзон-інтрон, після чого екзоні ділянки ферментативно з'єднуються разом, утворюючи зрілу мРНК (так званий сплайсинг). Кількість інтронів може варіювати в різних генах від нуля до багатьох десятків, а довжина - від кількох пар основ до декількох тисяч.  Ген може кодувати різні РНК-продукти шляхом зміни ініціюють та терминируются кодонів, а також альтернативного сплайсингу. Альтернативна експресія гена здійснюється і шляхом використання різних сполучень екзонів у зрілій іРНК, причому поліпептиди, синтезовані на таких іРНК, будуть відрізнятися як за кількістю амінокислотних залишків, так і за їх складом.  Поряд із структурними та регуляторними генами знайдені ділянки повторюваних нуклеотидних послідовностейфункції яких вивчені недостатньо, а також мігруючі елементи (мобільні гени), здатні переміщатися по геному. Знайдено також так звані псевдогени у еукаріотів, які представляють собою копії відомих генів, які працюють в інших частинах геному та позбавлені інтронів або інактивовані мутаціями. 

Транспортна РНК (тРНК) — маленький ланцюжок РНК (73-93 нуклеотидів), що служить для постачання специфічних амінокислот, необхідних для синтезу нового поліпептидного ланцюжка, до місця трансляції.

Транспортна РНК має 3 термінальні сайти для прикріплення амінокислоти. Ковалентний зв'язок між амінокислотою та РНК каталізує фермент аміноацил-тРНК-синтетаза. Також тРНК у містить ділянку з трьох нуклеотидних основ, відому як антикодон, що може прикріплятися до трьох комплементарних основ (кодон) у послідовності мРНК. Кожен вид молекули тРНК може прикріплятися тільки до одного виду амінокислоти, але через те, що генетичний код містить кілька кодонів, що кодують ту ж саму амінокислоту, молекули тРНК, що несуть різні антикодони, можуть нести ту ж саму амінокислоту.

Рибосома (ribosome) є немембранною органелою клітини, що складається з рРНК та рибосомних білків (протеїнів). Рибосома здійснює біосинтез білківтранслюючи мРНК поліпептидний ланцюг. Таким чином, рибосому можна вважати фабрикою, що виготовляє білки, базуючись на наявній генетичній інформації. В клітині дозрілі рибосоми знаходяться переважно в компартментах, де активного білкового синтезу. Вони можуть вільно плавати в цитоплазмі або бути прикріпленими до цитоплазматичного боку мембран ендоплазматичного ретикулуму чи ядра. Активні (ті що є в процесі трансляції) рибосоми знаходяться переважно у вигляді полісом. Існує ряд свідчень, які вказують на те, що рибосома є рибозимом.

Загальна будова

Атомарна модель будови 50S рибосоми Haloarcula marismortui

Атомарна модель будови 30S рибосоми Thermus thermophilus

Рибосоми прокаріотів та еукаріотів є дуже подібними за будовою та функцією, але відрізняються розміром. Вони складаються з двох субодиниць: однієї великої та однієї малої. Для процесу трансляції необхідна злагоджена взаємодія обох субодиниць, що разом становлять комплекс із молекулярною масою декілька мільйонів дальтон(Da). Субодиниці рибосом за звичай позначаються одиницями Сведберга (S), що є мірою швидкості седиментації під час центрифугування і залежать від маси, розміру та форми частинки. Позначені в цих одиницях, велика субодиниця є 50S або 60S (прокаріотичні або еукаріотичні, відповідно), мала є 30S або 40S, і ціла рибосома (комплекс малої разом з великою) 70S або 80S.

[ред.]Молекулярний склад

Молекулярний склад рибосом є доволі складним. Для прикладу, рибосома дріжджів ‘Saccharomyces cerevisiae’ складається із 79 рибосомних білків та 4 різних молекулрРНКБіогенез рибосом є також надзвичайно складним і багатоступеневим процесом, що відбувається в ядрі та ядерці еукаріотичної клітини.

Атомна структура великої субодиниці (50S) організму Haloarcula marismortui була опублікована N. Ban et al. в журналі Science 11 Серпня 2000 року. Невдовзі після цього, 21шого Вересня 2000 року, B.T. Wimberly, et al., опублікували в журналі Nature структуру 30S субодиниці організму Thermus thermophilus. Використовуючи ці координати, M.M. Yusupov, et al. зуміли реконструювати цілу 70S частинку Thermus thermophilus і опублікувати її в журналі Science, в Травні 2001. В 2009 році професорДжордж Чьорч (George Church) та коллеги з Гарварду створили повністю функціональну штучну рибосому в звичайних умовах, які присутні в клітинному середовищі. Як конструкційні елементи використовувались молекули з розщепленої за допомогою ензимів кишкової палички. Створена рибосома успішно синтезує білок, що відповідає за біолюмінесценцію.

[ред.]Центри зв’язування РНК

Рибосома містить чотири сайти зв`язування для молекул РНК: один для мРНК і три для тРНК. Перший сайт зв’язування тРНК називається сайтом ‘аміноацил-тРНК’, або ‘А-сайтом’. В цьому сайті міститься молекула тРНК „заряджена” „наступною” амінокислотою. Другий сайт, ‘пептидил-тРНК’ зв`язуючий, або ‘P-сайт’, містить молекулу тРНК, що зв’язує ростучий кінець поліпептидного ланцюга. Третій сайт, це ‘сайт виходу’, або ‘E-сайт’. В цей сайт потрапляє порожня тРНК яка позбулась ростучого кінця поліпептида, після його взаємодії з наступною „зарядженою” амінокислотою в пептидильному сайті. Сайт зв’язування мРНК знаходиться в малій субодиниці. Він утримує рибосому „нанизаною” на мРНК котру рибосома транслює.

[ред.]Функція

Схематичне зображення рибосоми в процесі трансляції. Мала субодиниця зв'язує мРНК, а велика субодиниця напрямляє аміноацил-тРНК та пептидил-тРНК до матричної РНК, контролюючи правильне парування відповідних триплетів

Рибосома є органелою, на якій відбувається трансляція генетичної інформації закодованої в мРНК. Ця інформація втілюється в синтезований тут-же поліпептиднийланцюг. Рибосома несе двояку функцію: є структурною платформою для процесу декодування генетичної інформації з РНК, та володіє каталітичним центромвідповідальним за формування пептидного зв’язку, так званим ‘пептидил-трансферазним центром’. Вважається що пептидил-трансферазна активність асоціюється з рРНК, і тому рибосома є рибозимом.

РНК (рибонуклеїнова кислота) — клас нуклеїнових кислот, лінійних полімерів нуклеотидів, до складу яких входять залишок фосфорної кислотирибоза (на відміну від ДНК, що містить дезоксирибозу) і азотисті основи — аденінцитозингуанін і урацил (на відміну від ДНК, що містить замість урацила містить тимін). РНК містяться головним чином в цитоплазмі клітин. Ці молекули синтезуються в клітинах всіх клітинних живих організмів, а також містяться в віроїдах та деяких вірусах. Основні функції РНК в клітинних організмах — шаблон для трансляції генетичної інформації в білки та поставка відповідних амінокислот дорибосом. В вірусах є носієм генетичної інформації (кодує білки оболонки та ферменти вірусів). Віроїди складаються з кільцевої молекули РНК та не містять в собі інших молекул. Існує гіпотеза світу РНК, згідно з якою, РНК виникли до білків й були першими формами життя.

Клітинні РНК утворюються в ході процесу, що зветься транскрипцією, тобто синтезу РНК на матриці ДНК, що здійснюється спеціальними ферментами - РНК-полімерази. Потім матричні РНК (мРНК) беруть участь у процесі, що називається трансляцією. Трансляція - це синтез білка на матриці мРНК за участю рибосом. Інші РНК після транскрипції піддаються хімічним модифікаціям, і після утворення вторинної та третинної структур виконують функції, що залежать від типу РНК.

Для одноланцюжкових РНК характерні різноманітні просторові структури, в яких частина нуклеотидів одного і того ж ланцюга спарені між собою. Деякі високо структуровані РНК беруть участь у синтезі білка клітини, наприклад, транспортні РНК служать для впізнавання кодонів та доставки відповідних амінокислот до місця синтезу білка, а матричні РНК служать структурною і каталітичною основою рибосом.

Однак функції РНК в сучасних клітинах не обмежуються їх роллю в трансляції. Так малі ядерні РНК беруть участь у сплайсингу еукаріотичних матричних РНК та інших процесах.

Крім того, що молекули РНК входять до складу деяких ферментів (наприклад, теломерази) у окремих РНК виявлена власна ензиматична активність, здатність вносити розриви в інші молекули РНК або, навпаки, «склеювати» два РНК-фрагмента. Такі РНК називаються рибозимами.

Геноми ряду вірусів складаються з РНК, тобто у них вона відіграє роль, яку у вищих організмів виконує ДНК. На підставі різноманітності функцій РНК в клітині була висунута гіпотеза, згідно з якою РНК - перша молекула, здатна до самовідтворення в добіологічних системах.

Нуклеотиди РНК складаються з цукру - рибози, до якої в положенні 1 'приєднано одна з підстав: аденін, гуанін, цитозин або урацил. Фосфатна група поєднує рибози в ланцюжок, утворюючи зв'язку з 3 'атомом вуглецю однієї рибози і в 5' становищі іншого. Фосфатні групи при фізіологічному рН негативно заряджені, тому РНК - поліаніонів. РНК транскрибується як полімер чотирьох підстав (аденіну (A), гуаніну (G), урацилу (U) і цитозину (C)), але в «зрілої» РНК є багато модифікованих підстав і цукрів. Всього в РНК налічується близько 100 різних видів модифікованих нуклеозидів, з яких 2'-О-метілрібоза найбільш часта модифікація цукру, а псевдоуридин - найбільш часто зустрічається модифіковане підставу. У псевдоурідіна (Ψ) зв'язок між урацилом і рибозою не C - N, а C - C, цей нуклеотид зустрічається в різних положеннях у молекулах РНК. Зокрема, псевдоурідін важливий для функціонування тРНК. Інше заслуговує на увагу модифікована підстава - гіпоксантин, деамінірованний гуанін, нуклеозид якого носить назву інозину. Інозин відіграє важливу роль у забезпеченні виродженністю генетичного коду. Роль багатьох інших модифікацій не до кінця вивчена, але в рибосомальної РНК багато пост-транскрипційних модифікацій знаходяться у важливих для функціонування рибосоми ділянках. Наприклад, на одному з рибонуклеотидів, що беруть участь в утворенні пептидного зв'язку.

Азотисті основи у складі РНК можуть утворювати водневі зв'язки між цитозином і гуаніном, аденін і урацилом, а також між гуаніном і урацилом. Однак можливі й інші взаємодії, наприклад, кілька аденінів можуть утворювати петлю, або петля, що складається з чотирьох нуклеотидів, в якій є пара підстав аденін - гуанін.

Важлива структурна особливість РНК, що відрізняє її від ДНК - наявність гідроксильної групи в 2 'положенні рибози, яка дозволяє молекулі РНК існувати в А, а не В-конформації, що найчастіше спостерігається у ДНК. У А-форми глибока і вузька велика борозенка і неглибока і широка мала борозенка. Другий наслідок наявності 2 'гідроксильної групи полягає в тому, що конформаційної пластичні, тобто не беруть участь в утворенні подвійної спіралі, ділянки молекули РНК можуть хімічно атакувати інші фосфатні зв'язку та їх розщеплювати. «Робоча» форма одноланцюжкові молекули РНК, як і у білків, часто володіє третинною структурою. Третинна структура утворюється на основі елементів вторинної структури, що утворюється за допомогою водневих зв'язків усередині однієї молекули. Розрізняють декілька типів елементів вторинної структури - стебло-петлі, петлі і псевдовузли. У силу великої кількості можливих варіантів спарювання підстав передбачення вторинної структури РНК - набагато складніше завдання, ніж передбачення вторинної структури білків, але в наш час[Коли?] є ефективні програми, наприклад, mfold.

Прикладом залежності функцій молекул РНК від їх вторинної структури є ділянки внутрішньої посадки рибосоми (IRES). IRES - структура на 5 'кінці інформаційної РНК, яка забезпечує приєднання рибосоми в обхід звичайного механізму ініціації синтезу білка, що вимагає наявності особливого модифікованого підстави (кепа) на 5' кінці і білкових факторів ініціації. Спочатку IRES були виявлені у вірусних РНК, але зараз накопичується все більше даних про те, що клітинні мРНК також використовують IRES-залежний механізм ініціації в умовах стресу. Багато типів РНК, наприклад, рРНК і мяРНК (малі ядерні РНК) в клітині функціонують у вигляді комплексів з білками, які ассоціюють з молекулами РНК після їх синтезу або (у еукаріотів) експорту з ядра в цитоплазму. Такі РНК-білкові комплекси називаються рибонуклеопротеїновими комплексами або рибонуклеопротеїдами.

Матрична рибонуклеїнова кислота (мРНК, синонім - інформаційна РНК, іРНК) - РНК, що відповідає за перенесення інформації про первинну структуру білків від ДНК до місць синтезу білків. мРНК синтезується на основі ДНК в ході транскрипції, після чого, у свою чергу, використовується під час трансляції як матриця для синтезу білків. Тим самим мРНК грає важливу роль в «прояві» (експресії) генів.

Довжина типової зрілої мРНК складає від кількох сотень до кількох тисяч нуклеотидів. Найдовші мРНК відмічені у (+) оц РНК-вмісних вірусів, наприклад пікорнавірусів, проте слід пам'ятати, що у цих вірусів мРНК утворює весь їхній геном.

ДНК нерідко порівнюють з кресленнями для виготовлення білків. Розвиваючи цю інженерно-виробничу аналогію, можна сказати, що, якщо ДНК - це повний набір креслень для виготовлення білків, що знаходиться на зберіганні в сейфі директора заводу, то мРНК - тимчасова робоча копія креслення, що видається в складальний цех.

Однак переважна більшість РНК не кодують білок. Ці некодуючі РНК можуть транскрибувати з окремих генів (наприклад, рибосомальні РНК) або бути похідними інтронів. Класичні, добре вивчені типи некодуючих РНК - це транспортні РНК (тРНК) і рРНК, які беруть участь у процесі трансляції. Існують також класи РНК, відповідальні за регуляцію генів, процесинг мРНК і інші ролі. Крім того, є й молекули некодуючих РНК, здатні каталізувати хімічні реакції, такі, як розрізання та лігірування молекул РНК. За аналогією з білками, здатними каталізувати хімічні реакції - ензимами (ферментами), каталітичні молекули РНК називаються рибозімами.

Транспортні (тРНК) - малі, що складаються з приблизно 80 нуклеотидів, молекули з консервативною третинною структурою. Вони переносять специфічні амінокислоти до місця синтезу пептидного зв'язку в рибосомі. Кожна тРНК містить ділянку для приєднання амінокислоти і антикодон для пізнавання та приєднання до кодону мРНК. Антикодон утворює водневі зв'язки з кодоном, що поміщає тРНК в положення, що сприяє утворенню пептидного зв'язку між останньою амінокислотою утвореного пептиду і амінокислотою, приєднаною до тРНК.

Рибосомальні РНК (рРНК) - каталітична складова рибосом. Еукаріотичні рибосоми містять чотири типи молекул рРНК: 18S, 5.8S, 28S і 5S. Три з чотирьох типів рРНК синтезуються в полісом. У цитоплазмі рибосомальні РНК з'єднуються з рибосомальними білками і формують нуклеопротеїн, званий рибосомою. Рибосома приєднується до мРНК і синтезує білок. рРНК складає до 80% РНК, що виявляється в цитоплазмі еукаріотичної клітини.

Незвичайний тип РНК, який діє в якості тРНК і мРНК (тмРНК) виявлений у багатьох бактеріях і пластидах. При зупинці рибосоми на дефектних мРНК без стоп-кодонів тмРНК приєднує невеликий пептид, що направляє білок на деградацію.

Мікро-РНК (21-22 нуклеотиду в довжину) знайдені в еукаріот і впливають через механізм РНК-інтерференції. При цьому комплекс мікро-РНК і ферментів може призводити до метилювання нуклеотидів в ДНК промотора гена, що служить сигналом для зменшення активності гена. При використанні іншого типу регуляції мРНК, комплементарна мікро-РНК, деградує. Однак є й міРНК, які збільшують, а не зменшують експресію генів.

Малі інтерферуючі РНК (міРНК, 20-25 нуклеотидів) часто утворюються в результаті розщеплення вірусних РНК, але існують і ендогенні клітинні міРНК. Малі інтерферуючі РНК також діють через РНК-інтерференцію за схожими з мікро-РНК механізмам.

Вакцини (лат. vacca — корова) — препарати, що складаються з ослаблених, вбитих збудників хвороб чи продуктів їхньої життєдіяльності. Ці специфічні речовини дістали назву від противіспяного препарату, виготовленого з вірусу коров'ячої віспи. Метод щеплень за допомогою вакцин називають вакцинацією, або імунізацією.

Творцем наукової теорії запобігання інфекційним захворюванням за допомогою виготовлених в лабораторії вакцин був засновник медичної мікробіології Луї Пастер. Вперше вакцинацію було здійснено в 1796 році англійським лікарем Едвордом Дженнером, який штучно прищепив дитині коров'ячу віспу, в результаті чого ця дитина набула імунітету до натуральної віспи.

Вакцини врятували людство не тільки від віспи. Переможено тяжку дитячу хворобу поліомієліт, вакцина БЦЖ виявилася досить ефективною проти туберкульозу. За допомогою вбитих мікробів або виділених з них антигенів створюється стійкий імунітет до кору, коклюшу, правця, газової гангрени, дифтерії та багатьох інших інфекційних захворювань.

Склад

До складу більшості вакцин входить:

  • Активний компонент;

  • Розчинник (сольов. розчин, H2O);

  • Стабілізатори, антибіотики;

  • Допоміжні речовини (солі Al, тіомерсал, формальдегід, дріжджові гриби)

За природою активного компоненту вакцини бувають:

  • Вакцини, що містять цільні вбиті мікроорганізми (коклюш, холера), активні вірусні — поліомеліт, грип.

  • Анатоксини (дифтерія правець, стафілокок.).

  • Вакцини з живих атенуйованих вірусів (кіргрипполіомієліт).

  • Вакцини з перехресно-реагуючих живих організмів, імунологічно пов'язаних з збудником

  • хімічно синтезовані субодиниці чи отримані за допомогою генної інженерії (гепатит В, грип, ВІЛ-інфекція).

  • Адсорбовані вакцини (АКДС).

Варто зазначити що кількість стабілізатора чи допоміжної речовини на кілька порядків менша ніж та, що може викликати побічну дію. Так, наприклад, вміст антибіотика канаміцину в одній дозі пероральної поліоміелітноі вакцини складає не більше 30 мікрограм, тоді як доза, що використовується з лікувальною метою, вимірюється в міліграмах на кілограм маси тіла; вміст тіомерсалу(мертиоляту) в одній дозі вакцини для профілактики гепатиту В складає 0.025 міліграм, в одній дозі адсорбованої кашлюково-дифтерійно-правцевоі вакцини — 0,005 міліграм, тоді як доза, що може завдати шкоди організму-75 міліграм на кілограм маси тіла; вміст формальдегіду в рідкій інактивованій вакцині для профілактики поліомієліту не більше 0.1 міліграм в одній дозі тоді як шкідлива доза-100 міліграм на кілограм маси тіла.

[ред.]Типи вакцин

Сучасні вакцини поділяють на чотири групи:

  • вакцини, які виготовляють із живих збудників з ослабленою вірулентністю (проти віспи, туберкульозу, чуми, сибірки, сказу, грипу, полімієліту та ін.);

  • вакцини з убитих патогенних мікробів (холерна, черевнотифозна, коклюшна, лептоспірозна, поліомієлітна тощо);

  • анатоксини (виготовляються з екзотоксинів відповідних збудників обробкою їх 0,3-0,4 %-м розчином формаліну і витримуванням при температурі 38-40 °С протягом 3—4 тижнів). Добуті у такий спосіб дифтерійний, правцевий, стафілококовий, холерний та інші анатоксини знайшли широке застосування в практиці;

  • хімічні вакцини (їх виготовляють не з цілих бактеріальних клітин, а із хімічних комплексів, добутих шляхом обробки суспензії клітин спеціальними методами; наприклад, для профілактики черевного тифу і правця застосовують хімічну сорбовану вакцину з О- і Vi- антигенів черевнотифозних бактерій і очищеного концентрованого правцевого анатоксину).

[ред.]Живі вакцини

Живі вакцини містять ослаблений живий мікроорганізм. Прикладом можуть служити вакцини проти поліомієліту, кору, паротиту, чи краснухи туберкульозу. Можуть бути отримані шляхом селекції (БЦЖ, грипозна). Вони здатні розмножуватися в організмі і викликати вакцинальний процес, формуючи несприйнятливість. Утрата вірулентності в таких штамів закріплена генетично, однак в облич з імунодефіцитами можуть виникнути серйозні проблеми. Як правило, живі вакцини є корпускулярними.

Живі вакцини одержують шляхом штучного атенуйовання (ослаблення штаму (BCG - 200-300 пасажів на жовчному бульйоні, ЖВС - пасаж на тканині бруньок зелених мавп) або відбираючи природні авірулентні штами. В наш час[Коли?] можливий шлях створення живих вакцин шляхом генної інженерії на рівні хромосом з використанням рестриктаз. Отримані штами будуть мати властивості обох збудників, хромосоми яких були узяті для синтезу. Аналізуючи властивості живих вакцин варто виділити, як позитивні так і їхні негативні якості.

Позитивні сторони: по механізму дії на організм нагадують "дикий" штам, може приживлятися в організмі і довгостроково зберігати імунітет (для коревої вакцини вакцинація в 12 мес. і ревакцинація в 6 років), витісняючи "дикий" штам. Використовуються невеликі дози для вакцинації (звичайно однократна) і тому вакцинацію легко проводити організаційно. Останнє дозволяє рекомендувати даний тип вакцин для подальшого використання.

Негативні сторони: жива вакцина корпускулярна - містить 99% баласту і тому звичайно досить реактогенна, крім того, вона здатна викликати мутації кліток організму (хромосомні аберації), що особливо небезпечно у відношенні статевих кліток. Живі вакцини містять вируси-забруднювачі (контамінанти), особливо це небезпечно у відношенні мавпячого СПИДу й онковірусів. На жаль, живі вакцини важко дозуються і піддаються біоконтролю, легко чуттєві до дії високих температур і вимагають неухильного дотримання холодового ланцюга.

Хоча живі вакцини вимагають спеціальних умов збереження, вони продукують досить ефективний клітинний і гуморальний імунітет і звичайно вимагають лише одне бустерне введення. Більшість живих вакцин уводиться парентерально (за винятком поліомієлітної вакцини).

На тлі переваг живих вакцин мається й одне застереження, а саме: можливість реверсії вірулентних форм, що може стати причиною захворювання вакцинуючого. З цієї причини живі вакцини повинні бути ретельно протестовані. Пацієнти з імунодефіцитами (які отримують імуносупресивну терапію, при СНІДі та пухлинах) не повинні одержувати такі вакцини.

Прикладом живих вакцин можуть служити вакцини для профілактики краснухи (Рудивакс), кору (Рувакс), поліомієліту (Поліпро Себин Веро), туберкульозу, паротиту (Імовакс Орейон). Живі вакцини випускаються в ліофілізованому виді (крім поліомієлітної).

[ред.]Інактивовані (убиті) вакцини

Інактивовані вакцини одержують шляхом впливу на мікроорганізми хімічним шляхом чи нагріванням. Такі вакцини є досить стабільними і безпечними, тому що не можуть викликати реверсію вірулентності. Вони часто не вимагають збереження на холоді, що зручно в практичному використанні. Однак у цих вакцин є і ряд недоліків, зокрема, вони стимулюють більш слабку імунну відповідь і вимагають застосування декількох доз (бустерні імунізації).

Вони містять або убитий цілий мікроорганізм (наприклад цільно кліткова вакцина проти коклюшу, інактивована вакцина проти сказу, вакцина проти вірусного гепатиту А), або компоненти клітинної стінки чи інших частин збудника, як, наприклад, в ацеллюлярній вакцині проти коклюшу, кон’югованій вакцині проти гемофилусной чи інфекції у вакцині проти менінгококковій інфекції. Їх убивають фізичними (температура, радіація, ультрафіолетове світло) чи хімічними (спирт, формальдегід) методами. Такі вакцини реактогени, застосовуються мало (коклюшна, проти гепатиту А).

Інактивовані вакцини також є корпускулярними. Аналізуючи властивості корпускулярних вакцин також варто виділити, як позитивні так і їхні негативні якості. Позитивні сторони: корпускулярні убиті вакцини легше дозувати, краще очищати, вони довгостроково зберігаються і менш чуттєві до температурних коливань. Негативні сторони: вакцина корпускулярна - містить 99 % баласту і тому реактогена, крім того, містить агент, використовуваний для умертвіння мікробних кліток (фенол). Ще одним недоліком інактивированной вакцини є те, що мікробний штам не приживляється, тому вакцина слабка і вакцинація проводиться в 2 чи 3 прийоми, вимагає частих ревакцинацій (АКДС), що сутужніше в плані організації в порівнянні з живими вакцинами. Інактивовані вакцини випускають як у сухому (ліофілізованному), так і в рідкому вигляді.

[ред.]Анатоксини

Багато мікроорганізмів, що викликають захворювання в людини, небезпечні тим, що виділяють екзотоксини, що є основними патогенетичними факторами захворювання (наприклад, дифтерія, стовбняк). Анатоксини, використовують як вакцини, індукують специфічну імунну відповідь. Для одержання вакцин токсини найчастіше знешкоджують за допомогою формаліну.

[ред.]Асоційовані вакцини

Вакцини різних типів, що містять кілька компонентів.

[ред.]Корпускулярні вакцини

Корпускулярні вакцини це бактерії віруси, інактивовані хімічним (формалін, спирт, фенол) чи фізичним (тепло, ультрафіолетове опромінення) впливом. Прикладами корпускулярних вакцин є: коклюшна (як компонент АКДС і Тетракок), антирабічна, лептоспірозна, грипозні цельновіріонні, вакцини проти енцефаліту, проти гепатиту А (Аваксим), інактивована поліовакцина.

[ред.]Хімічні вакцини

Хімічні вакцини містять компоненти клітинної стінки чи інших частин збудника, як наприклад в ацеллюлярній вакцині проти коклюшу, коньюгированной вакцині проти гемофільної інфекції чи у вакцині проти менінгококкової інфекції.

Хімічні вакцини створюються з антигенних компонентів, витягнутих з мікробної клітини. Виділяють ті антигени, що визначають імуногенні характеристики мікроорганізму. До таких вакцин відносяться: полісахаридні вакцини (Менинго А+З, Акт-ХІБ, Пневмо 23, Тифим Ви), ацелюлярні коклюшні вакцини.

[ред.]Біосинтетичні вакцини

Біосинтетичні вакцини - це вакцини, отримані методами генної інженерії які є штучно створеними антигенними детермінантами мікроорганізмів. Прикладом може служити рекомбинантна вакцина проти вірусного гепатиту B, вакцина проти ротавірусної інфекції. Для їхнього одержання використовують дріжджеві клітини в які вбудовують вирізаний ген, що кодує вироблення необхідного для одержання вакцини протеїну, що потім виділяється в чистому вигляді.

Біосинтетичні вакцини це синтезовані з амінокислот пептидні фрагменти, що відповідають амінокислотної послідовності тим структурам вірусного (бактеріального) білка, що розпізнаються імунною системою і викликають імунну відповідь. Важливою перевагою синтетичних вакцин у порівнянні з традиційними є те, що вони не містять бактерій і вірусів, продуктів їхньої життєдіяльності і викликають імунну відповідь вузької специфічності. Крім того, виключаються труднощі вирощування вірусів, збереження і можливості реплікації в організмі вакцинованої людини у випадку використання живих вакцин. При створенні даного типу вакцин можна приєднувати до носія кілька різних пептидів, вибирати найбільш імуногенні з них для коплексування з носієм. Разом з тим, синтетичні вакцини менш ефективні, у порівнянні з традиційними, тому що багато ділянок вірусів мають значну мінливість у плані імуногенності і дають меншу імуногенність, ніж нативний вірус. Однак, використання одного чи двох імуногенних білків замість цілого збудника забезпечує формування імунітету при значному зниженні реактогенности вакцини і її побічної дії.

[ред.]Векторні (рекомбинантні) вакцини

Векторні (рекомбинантні) вакцини — вакцини, отримані методами генної інженерії. Суть методу: гени вірулентного мікроорганізму, відповідальний за синтез протективних антигенів, вбудовують у геном якого - або нешкідливого мікроорганізму, що при культивуванні продукує і накопичує відповідний антиген. Прикладом може служити рекомбінантна вакцина проти вірусного гепатиту B, вакцина проти ротавірусной інфекції. Нарешті, маються позитивні результати використання т.зв. векторних вакцин, коли на носій - живий рекомбинантний вірус осповакцини (вектор) наносяться поверхневі білки двох вірусів: глікопротеїн D вірусу простого герпеса і гемагглютинин вірусу грипу А. Відбувається необмежена реплікація вектора і розвивається адекватна імунна відповідь проти вірусної інфекції обох типів.

Дія окремих компонентів мікробних, вірусних і паразитарних антигенів виявляється на різних рівнях і в різних ланках імунної системи. Їх результуюча може бути лише одна: клінічні ознаки захворювання - видужання - ремісія - рецидив - чи загострення інші стани організму. Так, зокрема, АДС - через 3 тижні після її введення дітям приводить до зростання рівня Т-клітин і збільшенню змісту ЕКК у периферичній крові, полівалентна бактеріальна вакцина Lantigen B стимулює антитілоутворені Ig A у крові і слині, але саме головне, що при подальшому спостереженні у вакцинованих відзначене зменшення числа випадків захворювання, а якщо вони і виникали, те протікали легше. Клінічна картина хвороби, таким чином є найбільш об'єктивним показником вакцинації.

Рекомбинантні вакцини - для виробництва цих вакцин застосовують рекомбінантну технологію, вбудовуючи генетичний матеріал мікроорганізму в дріжджові клітки, які продукують антиген. Після культивування дріжджів з них виділяють потрібний антиген, очищають і готують вакцину. Прикладом таких вакцин може служити вакцина проти гепатиту В (Еувакс У).

[ред.]Рибосомальні вакцини

Для одержання такого виду вакцин використовують рибосоми, що знаходяться в кожній клітці. Рибосоми - це органели, продукуючі білок по матриці - і-РНК. Виділені рибосоми з матрицею в чистому виді і представляють вакцину. Прикладом може служити бронхіальна і дизентерійна вакцини (наприклад, ИРС-19, Бронхо-мунал, Рибомунил).

[ред.]Безпека

Розробка і виготовлення сучасних вакцин виробляється відповідно до високих вимог до їхньої якості, у першу чергу, нешкідливості для щеплених. Звичайно такі вимоги ґрунтуються на рекомендаціях Всесвітньої Організації Охорони здоров'я, що залучає для їхнього складання самих авторитетних фахівців з різних країн світу. Ідеальною вакциною міг би вважатися препарат, що відповідав би наступним вимогам:

  • повністю нешкідливий для щеплених, а у випадку живих вакцин - і для людей, до яких вакцинний мікроорганізм попадає в результаті контактів із щепленими;

  • здатний викликати стійкий імунітет після мінімальної кількості введень (не більш трьох);

  • може вводитися в організм способом, що виключає парентеральні маніпуляції, наприклад, нанесенням на слизуваті оболонки;

  • достатньо стабільний, щоб не допустити погіршення властивостей вакцини при транспортуванні і збереженні в умовах прищеплювального пункту;

  • недорогий, щоб ціна не перешкоджала б масовому застосуванню вакцини.

  • Ві́рус (  вимова) (від лат. virus — отрута) — дрібні неклітинні частки, що складаються з нуклеїнової кислоти (ДНК або РНК) і білкової оболонки. Розділ біології, що вивчає віруси називається вірусологією.

  • Віруси — внутрішньоклітинні паразити, розмножуючись тільки в живих клітинах, вони використовують їхній ферментативний апарат і переключають клітину на синтез зрілих вірусних часток — віріонів. Поширені всюди. Викликають хвороби рослин, тварин і людини. Існує декілька механізмів антивірусного захисту організму людини. Один із них — синтез інтерферону, протеїну, що бере участь в блокуванні розповсюдження вірусної інфекції між сусідніми клітинами.

  • 2002 року в університеті Нью-Йорка був створений перший синтетичний вірус — вірус поліомієліту.

Біологічний метод полягає у використанні для захисту рослин від шкідливих організмів їх природних ворогів (хижаків, паразитів, гербофагів, антагоністів), продуктів їх життєдіяльності (антибіотиків, феромонів, ювеноїдів, біологічно активних речовин) та ентомопатогенних мікроорганізмів з метою зменшення їх чисельності та шкодочинності і створення сприятливих умов для діяльності корисних видів у агробіоценозах, тобто застосування «живого проти живого». Позитивним фактором у застосуванні біологічного методу є його екологічність. Біологічні засоби можна використовувати без обмеження кратності застосування, в той час як кількість обробок рослин хімічними пестицидами суворо регламентована. Біологічний метод захисту рослин — сучасна фундаментальна прикладна галузь знань, головною метою якої є отримання високоякісної екологічної продукції і збереження природного різноманіття сільськогосподарських культур. Біологічний захист рослин ґрунтується на системному підході, комплексній реалізації двох основних напрямків: збереження і сприяння діяльності природних популяцій корисних видів (ентомофагів, мікроорганізмів), самозахисту культурних рослин в агробіоценозах та поновлення агробіоценозів корисними видами, яких в них не вистачає або тих, які відсутні. Принциповою відміною біологічного методу захисту рослин від будь-якого іншого є використання саме першого напрямку, який здійснюють, застосовуючи біологічні препарати, способами сезонної колонізації, інтродукції та акліматизації зоофагів і мікроорганізмів. Розмноженню і ефективності діяльності корисних видів сприяють агробіотехнічні заходи, та деякі способи обробітку ґрунту за допомогою яких можна створювати сприятливі умови для життєдіяльності зоофагів. Безвідвальна оранка бурячищ призводить до накопичення ценокрепіса — паразита бурякового довгоносика. Створення умов для додаткового живлення дорослих комах підсилює діяльність зоофагів. Підсів нектароносів поряд з посівами сільськогосподарських культур і створення квітучого конвеєра (фацелії, віки, рапсу, гірчиці, гречки тощо) сприяють накопиченню для додаткового живлення і збільшенню чисельності анафеса — паразита п'явиць і щитоносок, мух дзюрчалок, золотоочок хижаків попелиць, ускакни паразита горохової зернівки, апантелесів, птеромалюса, ернестії паразитів лускокрилих на капусті. Додаткове живлення нектаром і пилком продовжує життя і збільшує плодючість багатьох зоофагів. Важливим агротехнічним заходом є вирощування стійких до шкідливих організмів сортів культурних рослин, що сприяє формуванню слабожиттєздатних популяцій шкідників. Кожен з основних засобів біологічного методу (застосування зоофагів, корисних в захисті рослин мікроорганізмів) має свої особливості і виявляє ефективність у відповідних умовах. Ці засоби не виключають, а доповнюють один одного. Нині особливу увагу приділяють пошуку шляхів спільного застосування біологічного захисту з іншими методами в інтегрованих системах захисту рослин від шкідливих організмів. Основним завданням даного методу є вивчення умов, які визначають ефективність природних ворогів шкідливих організмів і розробка способів регулювання їх чисельності і взаємовідносин з популяціями шкідливих організмів. До природних ворогів комах належать ентомофаги (хижаки і паразити) та хвороботворні (ентомопатогенні) мікроорганізми. До останніх належать збудники вірусних, бактеріальних, грибних, протозойних і нематодних (паразитичні види круглих червів) захворювань. Найчисельніші ентомофаги серед комах, павуків, кліщів. Значну користь у знищенні шкідників приносять хребетні тварини — комахоїдні птахи, риби, плазуни і ссавці. Ефективні хижаки належать до ряду твердокрилих, багато видів, що застосовуються для захисту рослин від шкідників, належать до родини кокцинелід або сонечок, які живляться попелицями, листокрутками, білокрилками, кліщами-фітофагами. Велику корисну роль в агробіоценозах відіграють хижі жужелиці, що живляться комахами, котрі мешкають у ґрунті, а саме: гусеницями підгризаючих і листогризучих совок, лучного і стеблового метеликів, дротяниками та несправжньодротяниками. Деякі хижаки мешкають на рослинах (красотіл великий) і знищують гусінь непарного кільчастого шовкопряда. Кримська жужелиця знищує шкідливих слимаків у садах і лісах Криму, червононога жужелиця живиться личинками і лялечками колорадського жука. Часто темп розмноження попелиць, листоблішок, кліщів стримують хижі личинки мух сирфід, галиць, сітчатокрилі, трипси та клопи. Ентомофаги мешкають у різноманітних екологічних умовах і тому відзначаються різними способами життя. Хижаки відкладають яйця в колонії попелиць, листоблішок, кокцид, кліщів або в середовище, що їх оточує. Одні живляться тільки у фазі личинки (мухи сирфіди, галиці, золотоочка звичайна), чи в дорослій фазі (скорпіонові мухи, мурашки, багато видів ос), інші — в дорослій фазі і фазі личинки (трипси, клопи, більшість сітчастокрилих, кокцинеліди, жужелиці, мухи ктирі тощо). Багато факультативних хижаків серед клопів (макролофус, подізус) Більшість ефективних хижаків серед кліщів належать до ряду паразитоформних і акаріформних. Найбільш вивчені і ефективні паразитоморфні кліщі родини фітосеїд, акаріморфні аністиди, хейлетиди, стігмеїди. Основними способами застосування ентомофагів і акаріфагів проти шкідників є: сезонна колонізація, інтродукція і акліматизація, внутрішньоареальне переселення, створення умов для їх розмноження. Сезонна колонізація передбачає штучне масове розведення і випуск ентомофагів в природу. В популяціях ентомофаги часто знаходяться в незначній кількості і самостійно не можуть стримувати розмноження шкідників. Масовий випуск комах здійснюється на початку фази, яка ушкоджується ентомофагом, в подальшому передбачається що вони будуть розмножуватись самостійно. Спосіб сезонної колонізації передбачає застосування видів роду трихограма, які використовуються проти підгризаючих, листогризучих совок, біланів, молей, листокруток тощо, та паразитів тепличної білокрилки енкарзію, дракона — паразита бавовняної совки, стеблового метелика, хойою — паразита американського білого метелика тощо. Використовують і хижаків — криптолемуса проти червеців, фітосейулюса проти павутинного кліща, хижу галицю афідимізу для знищення попелиць в захищеному ґрунті тощо. Інтродукція і акліматизація застосовуються проти карантинних шкідників, які мають обмежене розповсюдження в країні. Природні вороги обмежують розмноження шкідника на його батьківщині, а в новому географічному районі вони відсутні. Ефективних зоофагів і мікроорганізмів для завезення і акліматизації знаходять на батьківщині шкідливого організму і переселяють у нові райони. Найкращі результати отримують при завезенні вузькоспеціалізованих видів, які пристосовані до існування за рахунок одного шкідника, хвороби, бур'яну. Успішним було використання афелінуса проти кров'яної попелиці, родолії проти австралійського жолобчастого червиця, гриба ашерсонії проти цитрусової білокрилки. Внутрішньоареальне переселення полягає у переселенні ефективних, частіше спеціалізованих, природних ворогів із старих вогнищ, де чисельність шкідливих організмів знижується, у нові, які виникають в інших частинах ареалу виду, де ці вороги відсутні або ще не накопичилися. Мікроорганізми, які ушкоджують шкідливі види, для захисту рослин застосовуються у формі біологічних препаратів. Більшість біологічних бактеріальних препаратів створено на основі кристалоутворюючих бактерій групи Bacillus thuringiensis Berl., які утворюють спори і кристали, здатні розчинятися у кишечнику комах, куди вони потрапляють із кормом. У боротьбі з лускокрилими шкідниками сільськогосподарських культур і і лісу застосовуються такі препарати як лепідоцид, дендробацилін, гомелін, бітоксибацилін, наводор, астур, ентобактерін тощо. Препарат гаупсин, створений на основі неспорової бактерії Pseudomonas aureophaciens, використовується проти гусені яблуневої плодожерки і парші, борошнистої роси, плодової гнилі на яблуні і ґрунті. Для захисту від гризунів (полівок, мишей, щурів) дозволено використання наземним способом бактороденцида, зернового і амінокісткового, основою якого є бактерія Salmonella enteritidis. Грибні препарати містять спори ентомопатогенних грибів, що належать до недосконалих. Препарат боверин (концентрат БЛ і сухий порошок) використовується проти колорадського жука, гусені яблуневої плодожерки, оранжерейної білокрилки, на ефіроолійних культурах; вертицилін зерновий — проти оранжерейної білокрилки на огірках закритого ґрунту; пециломін — проти гусені плодожерок; метаризин — проти твердокрилих (бурякового і люцернового довгоносиків, дротяників); мікоафідин і мікоафідин Т — проти горохової та інших попелиць; нематофагін — проти галових нематод на овочевих культурах закритого ґрунту. Вірусні біологічні препарати (вірини) виготовляються на основі вірусів поліедрозу і гранульозу, які найчастіше уражують лускокрилих. Зараз рекомендовані для застосування рідкий препарат вірин-НШ проти шовкопряда-недопарки, вірин-КШ проти кільчастого шовкопряда в садах і плодозахисних смугах, вірин-КС проти гусені 1-2 віку капустяної совки на капусті і інших овочевих культурах, вірин-ОС (вірус гранульозу з домішкою вірусу поліедрозу озимої совки) на овочевих і баштанних культурах проти гусені 1-2 віку озимої совки, вірин-ГЯП на основі вірусу гранульозу яблуневої плодожерки (застосовується проти гусені, що відродилася), вірин АБМ. В живих системах на всіх рівнях організації поширеним способом передачі інформації є хімічна комунікація. Останнім часом велика увага приділяється розробці і застосуванню біологічно активних речовин, які забезпечують взаємовідносини між живими організмами в біоценозах, їх ріст і розвиток. Основною групою біологічно активних речовин є феромони. Феромони — хімічні речовини, які виробляють і виділяють в довкілля комахи. Ці речовини викликають відповідні поведінкові або фізіологічні реакції. Існують різні групи феромонів — статеві, агрегаційні, слідові тощо. Найбільшого поширення у практиці захисту рослин набули статеві феромони, які найчастіше виділяють самки для приваблювання самців. Найбільш вивченими є феромони лускокрилих, жорсткокрилих, клопів, сітчастокрилих, термітів. На основі визначення структури природних феромонів комах створені їх синтетичні аналоги. Статеві феромони використовуються для виявлення і визначення зони поширення шкідників, для сигналізації строків застосування захисних заходів, визначення щільності популяцій шкідників, а також для захисту посівів шляхом масового відлову самців («самцевого вакууму») і дезорієнтації, приваблення самців при хімічній стерилізації. Феромонні пастки слід виставляти за 7-10 днів до початку льоту імаго і щоденно оглядати. Після відлову перших самців огляд пасток, підрахунок і збір комах проводять кожні 5-7 днів. Капсули міняють через 30-35, клейові вкладки — через 10-15 днів. Масовий відлов шкідників проводиться за допомогою великої кількості пасток (від 10-30 до 100 і більше на 1 га). Спосіб дезорієнтації комах передбачає насичення площі високими концентраціями синтетичного феромону і порушення феромонної комунікації між самцями та самками. В результаті неспарені самки відкладають незапліднені яйця, що й зумовлює зниження чисельності виду. Встановлено, що процесу метаморфозу, линьки, розмноження і діапаузи комах регулюють гормони. Найбільш вивченими є ювенільний (личинковий), екдизон (линочний) і мозковий. Гормони були синтезовані і отримані як хімічні сполуки, що за структурою відрізняються від природних, але імітують їх біологічну активність — виконують роль регуляторів росту і розвитку комах. В захисті рослин практичного застосування набули інгібітори синтезу хитину і ювеноїди. Гормональні препарати за своєю дією значно відрізняються від традиційних інсектицидів. Вони не токсичні, але зумовлюють порушення ембріонального розвитку, метаморфозу, викликають стерилізацію. Інгібітори хітину порушують формування кутикули під час линьки. Ювеноїди викликають загибель при завершенні личинкового або лялечкового розвитку, є інгібіторами синтезу хитину при черговій линці. До застосування в практиці захисту рослин дозволені такі регулятори росту і розвитку комах: ювеноїди альтозид, кабат, майнекс, інстар, інсегар; інгібітори синтезу хитину димілін, алсистин, андалін, аплауд, ЕЙМ, сонет, номолт, каскад. Біологічний метод боротьби з хворобами рослин полягає у використанні існуючих у природі явищ надпаразитизму, антибіозу, тобто антагоністичних відносин між організмами, які розвиваються на рослинах і в ґрунті. В наш час найбільша увага приділяється вивченню і використанню антагоністів і продуктів їх життєдіяльності — антибіотиків. Як антагоністи багатьох фітопатогенів добре вивчені і застосовуються гриби роду Trichoderma. Вони поширені в ґрунтах різних типів і продукують антибіотики — гліотоксин, віридин, триходермін, соцукацилін, аламецин тощо, які мають антибактеріальні і антигрибні властивості. На основі цих збудників створено препарат триходермін — БЛ. Проти борошнистої роси огірка в захищеному ґрунті пропонується препарат бактофіт на основі бактерії Bacillus subtilis. Важлива роль у біологічному захисті рослин від хвороб відведена мікрофільним грибам — над паразитам (роду Ampelomyces, Trichothecium). Незавершений гриб Trichothecium roseum Lin утворює антибіотик трихотецин, який пригнічує розвиток і ріст багатьох грибів — збудників борошнистої роси огірків, моніліозу тощо. На його основі створений біологічний препарат трихотецин. Фітобактеріоміцин (ФБМ), продукт життєдіяльності Actinomyces lavendulae, рекомендований проти бактеріозів квасолі, кореневих гнилей пшениці, коренеїда цукрових буряків, слизового та судинного бактеріозу капусти. Біологічний метод боротьби з бур'янами вперше було застосовано проти чагарника лантани на Гавайських островах червеця Orthezia insignis Pung. В Україні біологічний захист застосовується проти паразитичної безхлорофільної рослини вовчка, яка уражує понад 120 видів культурних рослин, а найбільше соняшник. Серед організмів, які зменшують чисельність вовчка, найактивнішою є муха фітоміза. Нині великого значення набуває боротьба з амброзією полинолистою, яка поширюється в Україні на орних землях, пасовищах, луках, узбіччях доріг. В 1978 році проти неї був використаний інтродукований з Північної Америки амброзієвий листоїд. В цьому напрямку була проведена велика робота вченими інституту зоології АН РФ. Генетичний метод боротьби з шкідливими організмами був розроблений і запропонований А. С. Серебровським (1938, 1950). Цей метод передбачає насичення природної популяції шкідника генетично неповноцінними особинами того ж виду. Самки природної популяції, спаровуючись з такими особинами, відкладають нежиттєздатні яйця, не дають потомства, відбувається самознищення шкідника. Генетичний метод здійснюється способами променевої і хімічної стерилізації. Спосіб променевої стерилізації передбачає масове розведення шкідників, опромінення їх (гамма-променями, рентгенівськими променями) і наступний випуск в плодові насадження, посіви сільськогосподарських культур. У опромінених особинах виникають пошкодження хромосомного апарату. При хімічній стерилізації у якості стерилізаторів використовуються хімічні речовини, які належать до алкилючих сполучень, антиметаболітів і антибіотиків. Перші викликають статеву стерильність самок і самців, антиметаболіти обумовлюють стерильність самок. Генетичний метод боротьби був застосований у 1954 році проти сірої м'ясної мухи на острові Кюрасао, яка наносить великої шкоди тваринництву. Випуск стерилізованих особин був успішним. Генетичному методу боротьби притаманна вибірковість, його застосування не зв'язане з негативним впливом на довкілля і не сприяє з'явленню стійкості до факторів стерилізації.

Іммобілізовані ферменти (від лат. Immobiiis - нерухомий), препарати ферментів, молекули яких брало пов'язані з матрицею, або носієм (як правило, полімером), зберігаючи при цьому повністю або частково свої каталітіч. св-ва. Іммобілізовані ферменти зазвичай не розч. у воді; між двома фазами можливий обмін молекулами субстрату, продуктів каталітіч. р-ції, інгібіторів і активаторів.

Комерційне використання ферментів обмежена рядом чинників. Найважливіші з них - нестабільність ферментів та їх висока вартість.Вартість можна істотно знизити за рахунок іммобілізації ферменту. Це означає, що фермент закріплюють на поверхні або всередині твердої підкладки, яку легко видаляють з реакційної суміші після завершення ферментації. Фермент може бути використаний повторно, що істотно знижує вартість процесу.

Інша перевага іммобілізації полягає в тому, що фермент стає більш стабільним, ймовірно, за рахунок обмеження його здатності денатурувати при змінах рН, температури і розчинників. Приміром, іммобілізованих глюкозоізомераза стабільна при 65 ° С протягом року, тоді як в розчині вона денатурує при 45 ° С за кілька годин.

Іммобілізований фермент можна використовувати для безперервного (відкритого) виробництва, пропускаючи реагенти через фермент і збираючи продукт на кінцевому етапі.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]