Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Voprosy_KSE_2.docx
Скачиваний:
2
Добавлен:
16.09.2019
Размер:
38.97 Кб
Скачать

Первый закон Ньютона

Первый закон Ньютона постулирует наличие такого явления, как инерция тел. Поэтому он также известен как Закон инерции. Инерция — это явление сохранения телом скорости движения (и по величине, и по направлению), когда на тело не действуют никакие силы. Чтобы изменить скорость движения, на тело необходимо подействовать с некоторой силой. Естественно, результат действия одинаковых по величине сил на различные тела будет различным. Таким образом, говорят, что тела обладают инертностью. Инертность — это свойство тел сопротивляться изменению их текущего состояния. Величина инертности характеризуется массой тела.

Второй закон Ньютона

Второй закон Ньютона — дифференциальный закон движения, описывающий взаимосвязь между приложенной к материальной точке силой и получающимся от этого ускорением этой точки. Фактически, второй закон Ньютона вводит массу как меру проявления инертности материальной точки в выбранной инерциальной системе отсчёта (ИСО).

Третий закон Ньютона

Этот закон объясняет, что происходит с двумя взаимодействующими телами. Возьмём для примера замкнутую систему, состоящую из двух тел. Первое тело может действовать на второе с некоторой силой , а второе — на первое с силой . Как соотносятся силы? Третий закон Ньютона утверждает: сила действия равна по модулю и противоположна по направлению силе противодействия. Подчеркнём, что эти силы приложены к разным телам, а потому вовсе не компенсируются.

Существование явления инерции в классической механике постулируется Первым законом Нью́тона, который также называется Зако́ном ине́рции. Его классическую формулировку дал Ньютон в своей книге «Математические начала натуральной философии»:

Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.

Современная формулировка закона:

Существуют такие системы отсчёта, относительно которых материальная точка при отсутствии внешних воздействий (или при их взаимной компенсации) сохраняет состояние покоя или равномерного прямолинейного движения.

Системы отсчёта, в которых выполняется закон инерции, называют инерциальными системами отсчёта (ИСО). Все другие системы отсчёта (например, вращающиеся или движущиеся с ускорением) называются соответственно неинерциальными. Проявлением неинерциальности в них является возникновение фиктивных сил, называемых «силами инерции».

  1. Уравнения движения в механике и других областях.

Уравне́ние движе́ния (уравнения движения) — уравнение или система уравнений, задающие закон эволюции механической или сходной динамической системы (например, поля) во времени.

Эволюция физической системы однозначно определяется уравнениями движения и начальными условиями.

  1. Интегралы и интегральные характеристики движения. Законы сохранения.

  2. Особенности вращательного движения и закон сохранения момента импульса. Примеры из техники, спорта, астрономии.

Враща́тельное движе́ние — вид механического движения. При вращательном движении абсолютно твёрдого тела его точки описывают окружности, расположенные в параллельных плоскостях. Центры всех окружностей лежат при этом на одной прямой, перпендикулярной к плоскостям окружностей и называемой осью вращения. Ось вращения может располагаться внутри тела и за его пределами. Ось вращения в данной системе отсчёта может быть как подвижной, так и неподвижной. Например, в системе отсчёта, связанной с Землёй, ось вращения ротора генератора на электростанции неподвижна.

При выборе некоторых осей вращения, можно получить сложное вращательное движение - сферическое движение, когда точки тела движутся по сферам.

Зако́н сохране́ния моме́нта и́мпульса (закон сохранения углового момента) — векторная сумма всех моментов импульса относительно любой оси для замкнутой системы остается постоянной в случае равновесия системы. В соответствии с этим, момент импульса замкнутой системы относительно любой неподвижной точки не изменяется со временем.

Закон сохранения момента импульса есть проявление изотропности пространства.

  1. Цикличность процессов – общий закон природы. Примеры в физике, технике, биологии, медицине.

  2. Простейшие колебательные схемы и процессы. Гармонические колебания волны.

  3. Основные параметры колебания волн. Продольные и поперечные волны.

Колеба́ния — повторяющийся в той или иной степени во времени процесс изменения состояний системы около точки равновесия. Например, при колебаниях маятника повторяются отклонения его в ту и другую сторону от вертикального положения; при колебаниях в электрическом колебательном контуре повторяются величина и направление тока, текущего через катушку.

Колебания почти всегда связаны с попеременным превращением энергии одной формы проявления в другую форму.

Колебания различной физической природы имеют много общих закономерностей и тесно взаимосвязаны c волнами. Поэтому исследованиями этих закономерностей занимается обобщённая теория колебаний и волн. Принципиальное отличие от волн: при колебаниях не происходит переноса энергии, это, так сказать, «местные» преобразования энергии.

Продольными волнами называются волны, в которых колебания совершаются вдоль направления распространения. Примером таких волн могут быть акустические (упругие) волны, в редких случаях существуют примеры продольных электромагнитных волн (в сильно диспергирующих средах).

Продольные волны ─ распространяющееся с конечной скоростью в пространстве переменное взаимодействие материи, которое обычно характеризуется двумя функциями ─ векторной, направленной вдоль потока энергии волны, и скалярной функцией. В упругих волнах (звуковых волнах) векторная функция описывает колебания скорости движения элементов среды распространения волны. В зависимости от вида продольных волн и среды их распространения, скалярная функция описывает разного рода изменения в среде или в поле, например, плотность вещества.

Понятие плотности потока энергии продольных волн впервые введено русским физиком Н.А.Умовым.

ПОПЕРЕЧНАЯ ВОЛНА - волна, у к-рой характеризующая её векторная величина лежит в плоскости, перпендикулярной направлению распространения волны (для гармонич. волн - волновому вектору ). К П. в. относят, напр., волны в струнах или упругих мембранах, когда смещения частиц в них происходят строго перпендикулярно направлению распространения волн, а также плоские однородные эл--магн. волны в изотропном диэлектрике или магнетике; в этом случае поперечные колебания совершают векторы электрич. и магн. полей.

П. в. обладает поляризацией, т. е. вектор её амплитуды определ. образом ориентирован в поперечной плоскости. В частности, различают линейную, круговую и эллиптич. поляризации в зависимости от формы кривой, к-рую описывает конец вектора амплитуды (см. Поляризация волн, Поляризация света). Понятие П. в. так же, как и продольной волны, до нек-рой степени условно и связано со способом её описания. "Попереч-ность" и "предельность" волны определяются тем, какие величины реально наблюдаются. Так, плоская эл--магн. волна может описываться продольным Герца вектором. В ряде случаев разделение волн на продольные и поперечные вообще теряет смысл. Так, в гармо-нич. волне на поверхности глубокой воды (см. Волны на поверхности жидкости)частицы среды совершают круговые движения в вертик. плоскости, проходящей через волновой вектор k, т. е. колебания частиц имеют как продольную, так и поперечную составляющие.

  1. Акустические явления характеристики и действия звука. Спектр и тембр.

  2. Принципы звукозаписи. Психофизиологические действия звука.

Цифровая звукозапись — технология преобразования аналогового звука в цифровой с целью сохранения его на физическом носителе для возможности последующего воспроизведения записанного сигнала либо с целью передачи сигнала на расстояние, [[Криптография|криптования] сигнала, цифровой подписи сигнала, восстановления потерь, вызванной помехами при передаче, а также прочими использованиями преимуществ битового кода.

Представление аудиоданных в цифровом виде, позволяет очень эффективно изменять исходный материал при помощи специальных устройств или компьютерных программ - звуковых редакторов, что нашло широкое применение в промышленности, медиа-индустрии и быту.

Для воспроизведения цифрового звука применяют специальное оборудование, например музыкальные центры, цифровые плееры, компьютеры с звуковой картой и установленным программным обеспечением аудиоплеером или медиаплеером.

  1. Статистический и вероятностный подход в физике, и в науке в целом.

  2. Энтропия и ее статистический смысл. Принцип характеристики энтропии.

  3. Энтропия, как характеристика состояния и его изменений по отношению к социальным объектам.

  4. Принцип близкодействия и дальнодействия. Поле как форма материи.

  5. Физические и биологические поля, их проявления. Принцип суперпозиции.

  6. Закон Кулона и закон всемирного тяготения.

Зако́н Куло́на — это закон, описывающий силы взаимодействия между точечными электрическими зарядами.

Был открыт Шарлем Кулоном в 1785 г. Проведя большое количество опытов с металлическими шариками, Шарль Кулон дал такую формулировку закона:

Модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними

Иначе: Два точечных заряда в вакууме действуют друг на друга с силами, которые пропорциональны произведению модулей этих зарядов, обратно пропорциональны квадрату расстояния между ними и направлены вдоль прямой, соединяющей эти заряды. Эти силы называются электростатическими (кулоновскими).

Важно отметить, что для того, чтобы закон был верен, необходимы:

  1. точечность зарядов — то есть расстояние между заряженными телами много больше их размеров — впрочем, можно доказать, что сила взаимодействия двух объёмно распределённых зарядов со сферически симметричными непересекающимися пространственными распределениями равна силе взаимодействия двух эквивалентных точечных зарядов, размещённых в центрах сферической симметрии;

  2. их неподвижность. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца, действующая на другой движущийся заряд;

  3. взаимодействие в вакууме.

Однако с некоторыми корректировками закон справедлив также для взаимодействий зарядов в среде и для движущихся зарядов.

Закон всемирного тяготения Ньютона. Согласно этому закону между любой парой тел во Вселенной действует сила взаимного притяжения. Как и все физические законы, он облечен в форму математического уравнения. Если M и m — массы двух тел, а D — расстояние между ними, тогда сила F взаимного гравитационного притяжения между ними равна:

GMm/D2

где G — гравитационная константа, определяемая экспериментально. В единицах СИ ее значение составляет приблизительно 6,67 × 10–11.

Относительно этого закона нужно сделать несколько важных замечаний. Во-первых, его действие в явной форме распространяется на все без исключения физические материальные тела во Вселенной. В частности, сейчас вы и эта книга испытываете равные по величине и противоположные по направлению силы взаимного гравитационного притяжения. Конечно же, эти силы настолько малы, что их не зафиксируют даже самые точные из современных приборов, — но они реально существуют, и их можно рассчитать. Точно так же вы испытываете взаимное притяжение и с далеким квазаром, удаленным от вас на десятки миллиардов световых лет. Опять же, силы этого притяжения слишком малы, чтобы их инструментально зарегистрировать и измерить.

Второй момент заключается в том, что сила притяжения Земли у ее поверхности в равной мере воздействует на все материальные тела, находящиеся в любой точке земного шара. Прямо сейчас на вас действует сила земного притяжения, рассчитываемая по вышеприведенной формуле, и вы ее реально ощущаете как свой вес. Если вы что-нибудь уроните, оно под действием всё той же силы равноускоренно устремится к земле. Галилею первому удалось экспериментально измерить приблизительную величину ускорения свободного падения (см. Уравнения равноускоренного движения) вблизи поверхности Земли. Это ускорение обозначают буквой g.

  1. Заряды, токи, напряженность поля.

  2. Правило Ленца и его связь с более общими принципами естествознания. Принцип Ле Шантелье-Брауна.

Правило Ленца определяет направление индукционного тока и гласит: Индукционный ток всегда имеет такое направление, что он ослабляет действие причины, возбуждающей этот ток. Физическая суть правила

Согласно закону электромагнитной индукции Фарадея при изменении магнитного потока , пронизывающего электрический контур, в нём возбуждается ток, называемый индукционным. Величина электродвижущей силы, ответственной за этот ток, определяется уравнением:

где знак «минус» означает, что ЭДС индукции действует так, что индукционный ток препятствует изменению потока. Этот факт и отражён в правиле Ленца.

Правило Ленца носит обобщённый характер и справедливо в различных физических ситуациях, которые могут отличаться конкретным физическим механизмом возбуждения индукционного тока. Так, если изменение магнитного потока вызвано изменением площади контура (например, за счёт движения одной из сторон прямоугольного контура), то индукционный ток возбуждается силой Лоренца, действующей на электроны перемещаемого проводника в постоянном магнитном поле. Если же изменение магнитного потока связано с изменение величины внешнего магнитного поля, то индукционный ток возбуждается вихревым электрическим полем, появляющимся при изменении магнитного поля. Однако в обоих случаях индукционный ток направлен так, чтобы скомпенсировать изменение потока магнитного поля через контур.

Если внешнее магнитное поле, пронизывающее неподвижный электрический контур, создаётся внешними токами, текущими за пределами контура, то индукционный ток может быть направлен как в том же направлении, что и внешний, так и в противоположном, в зависимости от того, уменьшается или увеличивается этот ток. Если внешний ток увеличивается, то растёт и создаваемое им поле и его поток, что приводит к появлению индукционного тока, уменьшающего это увеличение. В этом случае индукционный ток направлен в сторону, противоположную основному. В обратном случае, когда внешний ток уменьшается со временем, уменьшение магнитного потока приводит к возбуждению индукционного тока, стремящегося увеличить поток, и этот ток направлен в ту же сторону, что и внешний ток.

Принцип Ле Шателье — Брауна (1884 г.) — если на систему, находящуюся в устойчивом равновесии, воздействовать извне, изменяя какое-либо из условий равновесия (температура, давление, концентрация, внешнее электромагнитное поле), то в системе усиливаются процессы, направленные на компенсацию внешнего воздействия.

Анри Ле Шателье (Франция) сформулировал этот термодинамический принцип подвижного равновесия, позже обобщённый Карлом Брауном .

Принцип устойчивости применим к равновесию любой природы: механическому, тепловому, химическому, электрическому (эффект Ленца, явление Пельтье)В ВИКИПЕДИИ ЕСТЬ ЕЩЁ ПРО ВЛИЯНИЯ ТЕМПЕРАТУРЫ ,ДАВЛЕНИЯ И т. д. Я НЕ ЗНАЮ СТОИТ ЭТО ДОБАВЛЯТЬ ИЛИ НЕТ.

  1. Понятие о микроэлектронике

  2. Элементы теории электромагнитного поля и электромагнитных волн. Шкала электромагнитных волн.

Для описания любых процессов радиотехники достаточно классической электродинамики. Как известно источниками электромагнитного поля являются электрические заряды. Неподвижные электрические заряды создают только электрическое поле. Движущиеся заряды — создают как электрическое, так и магнитное поле. Разделение электромагнитного поля на электрическое и магнитное носит характер относительный, а также зависит от системы координат. Прямолинейно движущийся электрический заряд создает электрическое и магнитное поле, но для прямолинейно движущегося наблюдателя он создает только электрическое поле.

Источником электромагнитного поля являются не только отдельные заряды, но и электрические и конвекционные токи (токи - это упорядоченно движущиеся электрические заряды). Электрическое и магнитное поля проявляются через силовое воздействие на единичный элементарный электрический заряд, внесенный в поле. Под действием электрического поля пробный электрический заряд, внесенный в поле начинает перемещаться.

Далее магнитное поле изменяет траекторию перемещения электрического заряда, а также ориентирует пробный постоянный магнит т.к. электромагнитное поле обладает направленным действием, то для его описания вводят векторные характеристики.

Сила взаимодействия электрических зарядов, а стало быть, и напряженность электрического поля, различны в различных средах и определяются по закону Кулона. Причина этого лежит в эффекте поляризации вещества под действием внешнего электрического поля. Процесс поляризации является сложным физическим процессом и непосредственно связан со структурой вещества.

Сила взаимодействия электромагнитного поля на точечный электрический заряд зависит не только от величины и положения заряда, но также от скорости и направления его движения.

Среды могут существенно отличаться величиной объемной проводимости, поэтому при одной и той же напряженности электрического поля в них могут возбуждаться различные токи. Для удобства классификации сред на проводники и диэлектрики вводят понятия идеального проводника и идеального диэлектрика. Идеальные проводники – это среды, удельная проводимость которых бесконечна. Идеальные диэлектрики – среды, удельная проводимость которых равна нулю. Очевидно, что в идеальном проводнике возбуждаются только токи проводимости, а идеальном диэлектрике только токи смещения.

Электромагни́тное излуче́ние (электромагнитные волны) — распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля (то есть, взаимодействующих друг с другом электрического и магнитного полей).

Среди электромагнитных полей вообще, порожденных электрическими зарядами и их движением, принято относить собственно к излучению ту часть переменных электромагнитных полей, которая способна распространяться наиболее далеко от своих источников — движущихся зарядов, затухая наиболее медленно с расстоянием.

Электромагнитное излучение подразделяется на-

-радиоволны (начиная со сверхдлинных),

-инфракрасное излучение,

-видимый свет,

-ультрафиолетовое излучение,

-рентгеновское излучение и жесткое (гамма-излучение) (см. ниже, см. также рисунок).

Электромагнитное излучение способно распространяться практически во всех средах. В вакууме (пространстве, свободном от вещества и тел, поглощающих или испускающих электромагнитные волны) электромагнитное излучение распространяется без затуханий на сколь угодно большие расстояния, но в ряде случаев достаточно хорошо распространяется и в пространстве, заполненном веществом (несколько изменяя при этом свое поведение).

  1. Корпускулярно-волновой дуализм.

Корпускуля́рно-волново́й дуали́зм — принцип, согласно которому любой объект может проявлять как волновые, так и корпускулярные свойства. Был введён при разработке квантовой механики для интерпретации явлений, наблюдаемых в микромире, с точки зрения классических концепций. Дальнейшим развитием принципа корпускулярно-волнового дуализма стала концепция квантованных полей в квантовой теории поля.

Как классический пример, свет можно трактовать как поток корпускул (фотонов), которые во многих физических эффектах проявляют свойства электромагнитных волн. Свет демонстрирует свойства волны в явлениях дифракции и интерференции при масштабах, сравнимых с длиной световой волны. Например, даже одиночные фотоны, проходящие через двойную щель, создают на экране интерференционную картину, определяемую уравнениями Максвелла[1].

Тем не менее, эксперимент показывает, что фотон не есть короткий импульс электромагнитного излучения, например, он не может быть разделён на несколько пучков оптическими делителями лучей, что наглядно показал эксперимент, проведённый французскими физиками Гранжье, Роже и Аспэ в 1986 году[2]. Корпускулярные свойства света проявляются при фотоэффекте и в эффекте Комптона. Фотон ведет себя и как частица, которая излучается или поглощается целиком объектами, размеры которых много меньше его длины волны (например, атомными ядрами), или вообще могут считаться точечными (например, электрон).

В настоящий момент концепция корпускулярно-волнового дуализма представляет лишь исторический интерес, так как служила только интерпретацией, способом описать поведение квантовых объектов, подбирая ему аналогии из классической физики. На деле квантовые объекты не являются ни классическими волнами, ни классическими частицами, приобретая свойства первых или вторых лишь в некотором приближении. Методологически более корректной является формулировка квантовой теории через интегралы по траекториям (пропагаторная), свободная от использования классических понятий.

  1. Волновые свойства излучения светового и других диапазонов.

  2. Интерференция

Интерференция волн — взаимное усиление или ослабление амплитуды двух или нескольких когерентных волн, одновременно распространяющихся в пространстве.[1] Сопровождается чередованием максимумов и минимумов (пучностей) интенсивности в пространстве. Результат интерференции (интерференционная картина) зависит от разности фаз накладывающихся волн.

Интерферировать могут все волны, однако устойчивая интерференционная картина будет наблюдаться только в том случае, если волны имеют одинаковую частоту и колебания в них не ортогональны. Интерференция может быть стационарной и нестационарной. Стационарную интерференционную картину могут давать только полностью когерентные волны. Например, две сферические волны на поверхности воды, распространяющиеся от двух когерентных точечных источников, при интерференции дадут результирующую волну, фронтом которой будет сфера.

При интерференции энергия волн перераспределяется в пространстве.[1] Это не противоречит закону сохранения энергии потому, что в среднем, для большой области пространства, энергия результирующей волны равна сумме энергий интерферирующих волн.

При наложении некогерентных волн средняя величина квадрата амплитуды результирующей волны равна сумме квадратов амплитуд накладывающихся волн. Энергия результирующих колебаний каждой точки среды равна сумме энергий ее колебаний, обусловленных всеми некогерентными волнами в отдельности.

  1. Дифракция

Дифра́кция во́лн (лат. diffractus — буквально разломанный, переломанный, огибание препятствия волнами) — явление, которое проявляет себя как отклонение от законов геометрической оптики при распространении волн. Она представляет собой универсальное волновое явление и характеризуется одними и теми же законами при наблюдении волновых полей разной природы.

Дифракция неразрывно связана с явлением интерференции. Более того, само явление дифракции зачастую трактуют как случай интерференции ограниченных в пространстве волн (интерференция вторичных волн). Общим свойством всех эффектов дифракции является зависимость степени её проявления от соотношения между длиной волны и характерным размером неоднородностей среды , либо неоднородностей структуры самой волны. Наиболее заметно они проявляются при размерах неоднородностей, сравнимых с длиной волны. При размерах неоднородностей, существенно превышающих длину волны (на 3—4 порядка и более), явлением дифракции, как правило, можно пренебречь. В последнем случае распространение волн с высокой степенью точности описывается законами геометрической оптики. С другой стороны, если размер неоднородностей среды много меньше длины волны, то в таком случае дифракции проявляет себя в виде эффекта рассеяния волн.[1]

Изначально явление дифракции трактовалось как огибание волной препятствия, то есть проникновение волны в область геометрической тени. С точки зрения современной науки определение дифракции как огибания светом препятствия признается недостаточным (слишком узким) и не вполне адекватным. Так, с дифракцией связывают весьма широкий круг явлений, возникающих при распространении волн (в случае учёта их пространственного ограничения) в неоднородных средах.

Дифракция волн может проявляться:

  • в преобразовании пространственной структуры волн. В одних случаях такое преобразование можно рассматривать как «огибание» волнами препятствий, в других случаях — как расширение угла распространения волновых пучков или их отклонение в определённом направлении;

  • в разложении волн по их частотному спектру;

  • в преобразовании поляризации волн;

  • в изменении фазовой структуры волн.

Наиболее хорошо изучена дифракция электромагнитных (в частности, оптических) и акустических волн, а также гравитационно-капиллярных волн (волны на поверхности жидкости).

  1. Корпускулярные свойства света и их технические применения.

  2. Представления о голографии.

Голография (др.-греч. ὅλος — полный + γραφή — пишу) — набор технологий для точной записи, воспроизведения и переформирования волновых полей.

Данный метод был предложен в 1947 году Дэннисом Габором, он же ввёл термин голограмма и получил «за изобретение и развитие голографического принципа» Нобелевскую премию по физике в 1971 году.

Рассеянные объектом волны характеризуются амплитудой и фазой. Регистрация амплитуды волн не представляет затруднений; обычная фотографическая пленка регистрирует амплитуду, преобразуя ее значения в соответствующее почернение фотографической эмульсии. Фазовые соотношения становятся доступными для регистрации с помощью интерференции, преобразующей фазовые соотношения в соответствующие амплитудные. Интерференция возникает, когда в некоторой области пространства складываются несколько электромагнитных волн, частоты которых с очень высокой степенью точности совпадают. Когда записывают голограмму, в определённой области пространства складывают две волны: одна из них идёт непосредственно от источника (опорная волна), а другая отражается от объекта записи (объектная волна). В этой же области размещают фотопластинку (или иной регистрирующий материал), в результате на этой пластинке возникает сложная картина полос потемнения, которые соответствуют распределению электромагнитной энергии (картине интерференции) в этой области пространства. Если теперь эту пластинку осветить волной, близкой к опорной, то она преобразует эту волну в волну, близкую к объектной. Таким образом, мы будем видеть (с той или иной степенью точности) такой же свет, какой отражался бы от объекта записи.

  1. Представления о современных оптических и оптоэлектронных приборах.

  2. Предмет изучения квантовой механики.

Ква́нтовая меха́ника — раздел теоретической физики, описывающий физические явления, в которых действие сравнимо по величине с постоянной Планка. Предсказания квантовой механики могут существенно отличаться от предсказаний классической механики. Поскольку постоянная Планка является чрезвычайно малой величиной по сравнению с действием повседневных объектов, квантовые эффекты в основном проявляются только в микроскопических масштабах. Если физическое действие системы намного больше постоянной Планка, квантовая механика органически переходит в классическую механику. В свою очередь, квантовая механика является нерелятивистским приближением (то есть приближением малых энергий по сравнению с энергией покоя массивных частиц системы) квантовой теории поля.

Классическая механика, хорошо описывающая системы макроскопических масштабов, не способна описать явления на уровне атомов, молекул, электронов и фотонов. Квантовая механика адекватно описывает основные свойства и поведение атомов, ионов, молекул, конденсированных сред, и других систем с электронно-ядерным строением. Квантовая механика также способна описывать поведение электронов, фотонов, а также других элементарных частиц, однако более точное релятивистски инвариантное описание превращений элементарных частиц строится в рамках квантовой теории поля. Эксперименты подтверждают результаты, полученные с помощью квантовой механики.

Основными понятиями квантовой кинематики являются понятия наблюдаемой и состояния.

Основные уравнения квантовой динамики — уравнение Шрёдингера, уравнение фон Неймана, уравнение Линдблада, уравнение Гейзенберга и уравнение Паули.

Уравнения квантовой механики тесно связаны со многими разделами математики, среди которых: теория операторов, теория вероятностей, функциональный анализ, операторные алгебры, теория групп.

  1. Дискретная модель в квантовой механике. Понятие квантов.

  2. Модель атома Бора, постулаты Бора.

  3. Представление о движении микрочастиц. Волновая функция и ее смысл.

В квантовой механике движение микрочастиц описывается уравнением Шредингера, играющим роль, подобную роли уравнений законов Ньютона в классической механике. Движение волны частицы ( например, электрона) количественно характеризуется амплитудой т з ( волновой функцией), которая вычисляется из уравнения Шредингера. Квадрат функции о з 2 выражает вероятность нахождения электрона в данном месте пространства.

Считалось, что движение микрочастиц можно описывать посредством законов классической механики, которые великолепно оправдали себя при исследовании движения макроскопических тел.

КВАНТОВАЯ МЕХАНИКА, теория движения микрочастиц ( частиц с очень малой массой) - электронов, протонов, нейтронов, атомов, молекул и др. Важнейшие особенности атомных объектов: дискретность ( прерывность) их взаимодействия, характеризуемая квантом действия ( см. Планка постоянная), и наличие как корпускулярных, так и волновых свойств. Опыты показали, что, подобно потокам фотонов, потоки электронов, протонов, нейтронов, а также атомов и молекул обладают некоторыми свойствами частиц ( корпускул) и нек-рыми свойствами волн.

Для того чтобы уравнение движения микрочастиц учитывало их волновые свойства, необходимо, чтобы оно было волновым уравнением, подобно тем, которые описывают звуковые или электромагнитные волны. Известно, что для плоской волны, распространяющейся вдоль оси х, волновое уравнение представляет собой дифференциальное уравнение в частных производных второго порядка; независимыми переменными являются координаты и время.

Для того чтобы уравнение движения микрочастиц учитывало их волновые свойства, необходимо, чтобы оно было волновым уравнением, подобно тем, которые описывают звуковые или электромагнитные волны.

Как видно, при движении микрочастиц в ограниченной области пространства ( например, электронов в атоме) волновая функция всегда содержит безразмерные величины, которые могут принимать ряд целочисленных значений. Эти величины называют квантовыми числами. Поскольку квантовое число в (13.9) определяет энергию частицы, п называют главным квантовым числом. При п 1 энергия атома минимальна. Энергии всех уровней отрицательны. Положительные значения энергии отвечают электрону, движущемуся вне атома. При этом энергия не квантуется.

Принцип неопределенности означает, что движение микрочастиц нельзя характеризовать траекторией как точной линией.

Квантование энергии, волновой характер движения микрочастиц, принцип неопределенности - все это показывает, что классическая механика непригодна для описания поведения микрочастиц.

Это соотношение отражает особую форму движения микрочастиц, для которых, как показывают опыты по дифракции, нельзя одновременно достаточно точно определить координаты и импульс.

Квантование энергии, волновой характер движения микрочастиц, принцип неопределенности - все это показывает, что классическая механика совершенно непригодна для описания поведения микрочастиц.

Квантование энергии, волновой характер движения микрочастиц, невозможность одновременно оценить положение и скорость их движения показывают, что классическая механика непригодна для описания поведения микрочастиц. В частности, непригодно представление о движении электрона в атоме по какой-то орбите: Согласно квантовой механике можно лишь говорить о вероятности нахождения электрона в данной точке пространства вокруг ядра.

Форма обмена энергией, соответствующая хаотическому, беспорядочному, неорганизованному движению микрочастиц, составляющих систему, называется теплообменом, а количество энергии, переданное при теплообмене, называется количеством теплоты или просто теплотой. В связи с этим часто кинетическую энергию беспорядочного движения микрочастиц называют тепловой энергией, а такую форму движения материи - тепловой. Теплообмен не связан с изменением положения тел, составляющих термодинамическую систему, и состоит в непосредственной передаче энергии молекулами одного тела молекулам другого при их контакте. Такой обмен энергией происходит между телами, имеющими разную температуру.

ПРО ВОЛНОВУЮ ФУНКЦИЮ ЕСТЬ ЗДЕСЬ,НО ТАМ ОДНИ ФОРМУЛЫ http://ru.wikipedia.org/wiki/Волновая_функция

  1. Волны Де Бройля

Во́лны де Бро́йля — волны, связанные с любыми микрочастицами и отражающие их волновую природу.  Основная проблема, связанная с волнами де Бройля, - это различие материалистической и идеалистической точек зрения на природу полей, т.е. признается или нет материальность поля (физического вакуума), где частицы - это возбужденные состояния поля. Если материальность поля признается, то и проблемы на самом деле нет - волна де Бройля естественным образом представляет волновой пакет, образованный полевыми парциальными волнами, который движется с частицей как единое целое в виде присоединенной волны.   Например, если объект совершает колебания в среде, то такие возмущения среды образуют волны, которые расходятся (излучаются). Если же объект движется равномерно и прямолинейно со скоростью, не превышающей скорости распространения волн, то в каждой точке, через которую он проходит, также возникает возмущение среды и, соответственно, возникают вторичные волны, которые начинают распространяться. Но так как волны, возникающие во всех точках, через которые прошел объект, оказываются когерентными, то они, интерферируя между собой, гасят друг друга и излучение волн не происходит, т.е. колебания среды можно наблюдать только вблизи от точек, через которые прошел объект. На больших же расстояниях волны полностью гасят друг друга и колебания среды не наблюдаются. Таким образом, с объектом движется присоединенная волна, представляющая пакет парциальных волн, которая не образует излучения.

При движении заряда в пространстве изменяется электрическое смещение поля, что представляет ток смещения jсм = -qv/4πr3 в виде вихревого электрического D = ε0μ0qv2/4πr2 и магнитного B = μ0qv/4πr2 полей, т.е. возникает переменное электромагнитное поле. Таким образом, движение зарядов сопровождается вихревыми электрическими и магнитными полями - электромагнитными возмущениями, но для нерелятивистских скоростей энергия вихревого электрического поля ничтожно мала по сравнению с энергией магнитного поля, поэтому при расчете ей можно пренебречь. Если же скорость заряда приближается к скорости света, то энергия вихревого электрического поля приближается к энергии магнитного поля и при расчете электромагнитной энергии ее необходимо учитывать: Wэ/Wм = v2/c2, где Wэ - энергия вихревого электрического поля, Wм - энергия вихревого магнитного поля, v - скорость движения заряда, c - скорость света.

  1. Типы колебаний (моды). Примеры в классической и квантовой физике.

  2. Соотношение неопределенностей и принципы дополнительности, их философский смысл.

  3. Понятие о ядерной энергетики и атомном оружии.

Ядерная энергетика (Атомная энергетика) — это отрасль энергетики, занимающаяся производством электрической и тепловой энергии путём преобразования ядерной энергии.

Обычно для получения ядерной энергии используют цепную ядерную реакцию деления ядер урана-235 или плутония. Ядра делятся при попадании в них нейтрона, при этом получаются новые нейтроны и осколки деления. Нейтроны деления и осколки деления обладают большой кинетической энергией. В результате столкновений осколков с другими атомами эта кинетическая энергия быстро преобразуется в тепло.

Хотя в любой области энергетики первичным источником является ядерная энергия (например, энергия солнечных ядерных реакций в гидроэлектростанциях и электростанциях, работающих на органическом топливе, энергия радиоактивного распада в геотермальных электростанциях), к ядерной энергетике относится лишь использование управляемых реакций в ядерных реакторах.

Ядерная энергия производится в атомных электрических станциях, используется на атомных ледоколах, атомных подводных лодках; США осуществляют программу по созданию ядерного двигателя для космических кораблей, кроме того, предпринимались попытки создать ядерный двигатель для самолётов (атомолётов) и «атомных» танков.

Я́дерное ору́жие (или а́томное ору́жие) — совокупность ядерных боеприпасов, средств их доставки к цели и средств управления; относится к оружию массового поражения наряду с биологическим и химическим оружием. Ядерный боеприпас — оружие взрывного действия, основанное на использовании ядерной энергии, высвобождающейся при цепной ядерной реакции деления тяжёлых ядер и/или термоядерной реакции синтеза лёгких ядер.

  1. Основные принципы устройства работы лазера.

Ла́зер (англ. laser, акроним от англ. light amplification by stimulated emission of radiation — усиление света посредством вынужденного излучения), опти́ческий ква́нтовый генера́тор — устройство, преобразующее энергию накачки (световую, электрическую, тепловую, химическую и др.) в энергию когерентного, монохроматического, поляризованного и узконаправленного потока излучения.

Физической основой работы лазера служит квантовомеханическое явление вынужденного (индуцированного) излучения. Излучение лазера может быть непрерывным, с постоянной мощностью, или импульсным, достигающим предельно больших пиковых мощностей. В некоторых схемах рабочий элемент лазера используется в качестве оптического усилителя для излучения от другого источника. Существует большое количество видов лазеров, использующих в качестве рабочей среды все агрегатные состояния вещества. Некоторые типы лазеров, например лазеры на растворах красителей или полихроматические твердотельные лазеры, могут генерировать целый набор частот (мод оптического резонатора) в широком спектральном диапазоне. Габариты лазеров разнятся от микроскопических для ряда полупроводниковых лазеров до размеров футбольного поля для некоторых лазеров на неодимовом стекле. Уникальные свойства излучения лазеров позволили использовать их в различных отраслях науки и техники, а также в быту, начиная с чтения и записи компакт-дисков и заканчивая исследованиями в области управляемого термоядерного синтеза.

Физической основой работы лазера служит явление вынужденного (индуцированного) излучения. Суть явления состоит в том, что возбуждённый атом способен излучить фотон под действием другого фотона без его поглощения, если энергия последнего равняется разности энергий уровней атома до и после излучения. При этом излучённый фотон когерентен фотону, вызвавшему излучение (является его «точной копией»). Таким образом происходит усиление света. Этим явление отличается от спонтанного излучения, в котором излучаемые фотоны имеют случайные направления распространения, поляризацию и фазу.

  1. Применение лазера.

С самого момента разработки лазер называли устройством, которое само ищет решаемые задачи. Лазеры нашли применение в самых различных областях — от коррекции зрения до управления транспортными средствами, от космических полётов до термоядерного синтеза. Лазер стал одним из самых значимых изобретений XX века.