Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
матан экз.doc
Скачиваний:
9
Добавлен:
16.09.2019
Размер:
303.1 Кб
Скачать
  1. Законы распределения: ряд распределения, функция распределения, плотность распределения.

Заданное соответствие между возможными значениями ДСВХ и их вероятностями называется законом распределения дискретной случайной величины ; его можно задать таблично, аналитически (в виде формулы) и графически.

При табличном задании закона распределения дискретной случайной величины первая строка таблицы содержит возможные значения, а вторая - их вероятности:

Х

x1

x2

xn

р

p1

p2

pn

Эта таблица называется рядом распределения

Фу́нкция распределе́ния в теории вероятностей — функция, характеризующая распределение случайной величины или случайного вектора.

Свойства

  • непрерывна справа:[1]

не убывает на всей числовой прямой.

.

.

Распределение случайной величины однозначно определяет функцию распределения.

Верно и обратное: если функция удовлетворяет четырём перечисленным выше свойствам, то существует вероятностное пространство и определённая на нём случайная величина, такая что является её функцией распределения.

По определению непрерывности справа, функция имеет правый предел в любой точке , и он совпадает со значением функции в этой точке.

В силу неубывания, функция также имеет и левый предел в любой точке , который может не совпадать со значением функции. Таким образом, функция либо непрерывна в точке, либо имеет в ней разрыв первого рода.

Плотностью распределения вероятностей непрерывной случайной величины Х называется функция f(x) – первая производная от функции распределения F(x).

Плотность распределения также называют дифференциальной функцией. Для описания дискретной случайной величины плотность распределения неприемлема.

Смысл плотности распределения состоит в том, что она показывает как часто появляется случайная величина Х в некоторой окрестности точки х при повторении опытов.

  1. Числовые параметры распределения ( матожидание, дисперсия, начальные и центральные моменты).

Математи́ческое ожида́ние — среднее значение случайной величины, распределение вероятностей случайной величины, рассматривается в теории вероятностей.

Математическое ожидание - число, вокруг которого сосредоточены значения случайной величины. Математическое ожидание случайной величины x обозначается Mx .

Математическое ожидание дискретной случайной величины x , имеющей распределение

x1 x2 ... xn

p1 p2 ... pn

называется величина , если число значений случайной величины конечно.

Если число значений случайной величины счетно, то . При этом, если ряд в правой части равенства расходится, то говорят, что случайная величина x не имеет математического ожидания.

Математическое ожидание непрерывной случайной величины с плотностью вероятностей px (x) вычисляется по формуле . При этом, если интеграл в правой части равенства расходится, то говорят, что случайная величина x не имеет математического ожидания.

Если случайная величина h является функцией случайной величины x , h = f(x), то

.

Аналогичные формулы справедливы для функций дискретной случайной величины:

,

Основные свойства математического ожидания:

математическое ожидание константы равно этой константе, Mc=c ;

математическое ожидание - линейный функционал на пространстве случайных величин, т.е. для любых двух случайных величин x , h и произвольных постоянных a и b справедливо: M(ax + bh ) = a M(x )+ b M(h );

математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий, т.е. M(x h ) = M(x )M(h ).

Начальным моментом k-го порядка случайной величины x называется математическое ожидание k-й степени случайной величины x , т.е. a k = Mx k.

Центральным моментом k-го порядка случайной величины x называется величина m k, определяемая формулой m k = M(x - Mx )k.

Заметим, что математическое ожидание случайной величины - начальный момент первого порядка, a 1 = Mx , а дисперсия - центральный момент второго порядка,

a 2 = Mx 2 = M(x - Mx )2 = Dx .

Существуют формулы, позволяющие выразить центральные моменты случайной величины через ее начальные моменты, например:

m 2=a 2-a 12, m 3 = a 3 - 3a 2a 1 + 2a 13.

Если плотность распределения вероятностей непрерывной случайной величины симметрична относительно прямой x = Mx , то все ее центральные моменты нечетного порядка равны нулю.

Дисперсия случайной величины характеризует меру разброса случайной величины около ее математического ожидания.

Если случайная величина x имеет математическое ожидание Mx , то дисперсией случайной величины x называется величина Dx = M(x - Mx )2.

Легко показать, что Dx = M(x - Mx )2= Mx 2 - M(x )2.

Эта универсальная формула одинаково хорошо применима как для дискретных случайных величин, так и для непрерывных. Величина Mx 2 >для дискретных и непрерывных случайных величин соответственно вычисляется по формулам

,

Для определения меры разброса значений случайной величины часто используется среднеквадратичное отклонение , связанное с дисперсией соотношением .

Основные свойства дисперсии:

дисперсия любой случайной величины неотрицательна, Dx 0;

дисперсия константы равна нулю, Dc=0;

для произвольной константы D(cx ) = c2D(x );

дисперсия суммы двух независимых случайных величин равна сумме их дисперсий: D(x ± h ) = D(x ) + D (h ).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]