Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shpory_biokhimia.doc
Скачиваний:
23
Добавлен:
15.09.2019
Размер:
1.3 Mб
Скачать

34.Образование аммиака. Транспорт аммиака. Восстановительное аминирование. Амиды и их физиологическое значение.

Катаболизм аминокислот в тканях происходит постоянно со скоростью ∼100 г/сут. При этом в результате дезаминирования аминокислот освобождается большое количество аммиака. Часть аммиака образуется в кишечнике в результате действия бактерий на пищевые белки (гниение белков в кишечнике) и поступает в кровь воротной вены. Концентрация аммиака в крови воротной вены существенно больше, чем в общем кровотоке. В печени задерживается большое количество аммиака, что поддерживает низкое содержание его в крови. Концентрация аммиака в крови в норме редко превышает 0,4-0,7 мг/л (или 25-40 мкмоль/л). В крови и цитозоле клеток при физиологических значениях рН аммиак переходит в ион аммония - NH4+, количество неионизированного NH3 невелико (~ 1%). Аммиак - токсичное соединение. Даже небольшое повышение его концентрации оказывает неблагоприятное действие на организм, и прежде всего на ЦНС. Так, повышение концентрации аммиака в мозге до 0,6 ммоль вызывает судороги. К симптомам гипераммониемии относят тремор, нечленораздельную речь, тошноту, рвоту, головокружение, судорожные припадки, потерю сознания. В тяжёлых случаях развивается кома с летальным исходом. Механизм токсического действия аммиака на мозг и организм в целом, очевидно, связан с действием его на несколько функциональных систем. Аммиак легко проникает через мембраны в клетки и в митохондриях сдвигает реакцию, катализируемую глутаматдегидрогеназой, в сторону образования глугамата: α-Кетоглутарат + NADH + Н+ + NH3 → Глутамат + NAD+. Уменьшение концентрации α-кетоглутарата вызывает:

угнетение обмена аминокислот (реакции транса-минирования) и, следовательно, синтеза из них нейромедиаторов (ацетилхолина, дофамина и др.); гипоэнергетическое состояние в результате снижения скорости ЦТК. Недостаточность α-кетоглутарата приводит к снижению концентрации метаболитов ЦТК, что вызывает ускорение реакции синтеза оксалоа-цетата из пирувата, сопровождающейся интенсивным потреблением СО2. Усиленное образование и потребление диоксида углерода при гипераммониемии особенно характерны для клеток головного мозга.

Повышение концентрации аммиака в крови сдвигает рН в щелочную сторону (вызывает алкалоз). Это, в свою очередь, увеличивает сродство гемоглобина к кислороду, что приводит к гипоксии тканей, накоплению СО2 и гипоэнергетическому состоянию, от которого главным образом страдает головной мозг.

Высокие концентрации аммиака стимулируют синтез глутамина из глутамата в нервной ткани (при участии глутаминсинтетазы):Глутамат + NH3 + АТФ → Глутамин + АДФ + Н3Р04.

Накопление глутамина в клетках нейроглии приводит к повышению осмотического давления в них, набуханию астроцитов и в больших концентрациях может вызвать отёк мозга. Снижение концентрации глутамата нарушает обмен аминокислот и нейромедиаторов, в частности синтез у-аминомасляной кислоты (ГАМК), основного тормозного медиатора. При недостатке ГАМК и других медиаторов нарушается проведение нервного импульса, возникают судороги. Ион NH4+ практически не проникает через цитоплазматические и митохондриальные мембраны. Избыток иона аммония в крови способен нарушать трансмембранный перенос одновалентных катионов Na+ и К+, конкурируя с ними за ионные каналы, что также влияет на проведение нервных импульсов.

Транспорт аммиака.Хотя аммиак может экскретироваться из организма в виде аммонийных солей - особенно при метаболическом ацидозе , - большая его часть выделяется в составе мочевины , главного азотистого компонента мочи. Аммиак постоянно продуцируется в тканях, однако содержится в периферической крови лишь в следовых количествах (10-20 мкг/100 мл); он быстро удаляется из кровеносной системы печенью, где входит в состав глутамат а, глутамин а или мочевины. Удаляется аммиак и с помощью глутаматдегидрогеназы . Образование глутамин а катализируется глутаминсинтетазой - митохондриальным ферментом, присутствующим в больших количествах в ткани почек. Синтез амидной связи глутамина осуществляется за счет гидролиза одного эквивалента АТР с образованием ADP и Pi . Равновесие этой реакции смещено в направлении синтеза глутамина. Освобождение амидного азота глутамина в виде аммиака происходит путем гидролитического отщепления аммиака, катализируемого глутаминазой . Глутаминазная реакция в отличие от реакции, катализируемой глутаминсинтетазой, протекает без участия адениновых нуклеотидов и сильно сдвинута в сторону образования глутамата; в направлении синтеза глутамина она не осуществляется. Таким образом, глутаминсинтетаза и глутаминаза катализируют взаимопревращение свободного аммонийного иона и глутамина; это напоминает взаимопревращение глюкозы и глюкозо-6-фосфат а с помощью глюкокиназы и глюкозо-6-фосфатазы .

Реакция, аналогичная той, которая катализируется глутаминазой, происходит при участии L- аспарагиназы , присутствующей в тканях животных, растениях и микроорганизмах. Исследовалась возможность применения аспарагиназы и глутаминазы в качестве противоопухолевых агентов , поскольку некоторые опухоли проявляют аномально высокую потребность в глутамин е и аспарагин е. Если в ткани мозга основной путь удаления аммиака состоит в образовании глутамина, то в печени наиболее важным путем является образование мочевины . В ткани мозга тоже может идти образование мочевины, но существенной роли в удалении аммиака этот процесс не играет. Образованию глутамина в мозгу должен предшествовать синтез глутамата, поскольку поступающего с током крови глутамата оказывается недостаточно при высокой концентрации в крови аммиака. Непосредственным предшественником глутамата Является альфа-кетоглутарат . Образование глутамина из аммиака может привести к быстрому снижению концентраций интермедиатов цикла лимонной кислоты , если они не будут пополняться за счет превращения пируват а в оксалоацетат , сопровождающегося фиксацией CO2 . В ткани мозг а действительно наблюдается существенное включение в состав аминокислот CO2, вероятно, после вступления последнего в цикл лимонной кислоты; после введения аммиака дополнительное количество оксалоацетата направляется на синтез глутамина (через стадию альфа-кетоглутарата).

Восстановительное аминирование - это превращение кетонов в соответствующие им амины.

Амиды — химические соединения, содержащие амидную группу -CONR1R2, часто рассматриваются как производные карбоновых кислот, образующиеся в результате замены группы -ОН карбоксила на группу -NR1R2, где R1 и R2 — углеводородные радикалы или атомы водорода. При действии горячей воды или водного пара амиды гидролизуются. Быстрее идёт гидролиз сильными щелочами и водными растворами сильных кислот.Амиды обладают очень слабо выраженными кислотными и основными свойствами. Реагируя со щелочными металлами, они дают соли, легко разлагаемые водой. Некоторые соли тем не менее устойчивы (ртутная соль ацетамида используется при протравке зерна).Амиды способны присоединять протон сильной кислоты, образуя соли, в которых они выступают в качестве оснований.

Незамещённые амиды (амиды, в которых атомы водорода при азоте не замещены радикалами) легко разлагаются на холоду раствором азотистой кислоты, при этом выделяется азот и образуется соответствующая карбоновая кислота.RCONH2+HNO2=RCOOH+H2O+N2

Образование амидов используют для защиты аминогруппы и для идентификации первичных и вторичных аминов (преим. в виде ацетамидов и бензамидов), а также карбоновых к-т (в виде незамещенных амидов, анилидов, бензиламидов). Особое значение методы защиты МН2 - группы имеют в синтезе пептидов (см. Белки). Амиды - пластификаторы бумаги, искусственной кожи, ПВХ, экстрагенты нек-рых радиоактивных металлов, сырье в произ-ве полимеров, промежут. продукты в синтезе красителей и сульфамидных препаратов и др.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]