Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЛЕК КУРС ЕНМСЭИ.doc
Скачиваний:
65
Добавлен:
13.09.2019
Размер:
378.37 Кб
Скачать

Тема 10. Специальные методы частных наук (общеэкспертные методы) в судебно-экспертной практике

Понятие и классификация общеэкспертных методов.

Характеристика методов анализа изображений, морфологического анализа.

Общая характеристика методов оптической и электронной микроскопии, рентгеноскопических методов.

Характеристика методов анализа состава и структуры объектов экспертного исследования. Металлографический и рентгеноструктурный анализы.

Методы исследования отдельных свойств объектов.

Специальные методы частных наук представляют собой современные методы судебно-экспертного исследования, многие из которых требуют использования сложного аналитического оборудования. Их обозначают как инструментальные, специальные методы.

Общеэкспертные методы включают многие физические, химические и физико-химические методы, например электронная и оптическая микроскопия, хроматография, химико-аналитические методы, биологические, психологические и многие другие. Основой большинства общеэкспертных методов являются фундаментальные и прикладные научные знания и технические решения. В то же время некоторые методы, применяемые только в экспертизах данного рода или только для определенных объектов, называют частноэкспертными (например, в фоноскопических экспертизах используются методы акустического анализа).

Система общеэкспертных методов исследования вещественных доказательств включает методы:

1) анализа изображений;

2) морфологического анализа;

3) анализа состава;

4) анализа структуры;

5) изучения физических, химических и других свойств.

Методы анализа изображений используются для исследования традиционных криминалистических объектов - следов человека, орудий и инструментов, транспортных средств, а также документов, кино-, фото- и видеоматериалов и проч. В основе этих методов лежит выявление признаков и их сравнение, диагностирование свойств объекта оригинала по его изображению. Но если раньше анализ изображений (в дактилоскопической, трасологической, баллистической, почерковедческой экспертизах) производился визуально или с использованием увеличивающих приспособлений, то в настоящее время широко применяются математические методы анализа изображений в сочетании с компьютерными технологиями. Иллюстрацией этого тезиса служит использование в дактилоскопической экспертизе современных автоматизированных идентификационных дактилоскопических систем (АДИС).

При экспертном исследовании информация об объекте часто передается в компьютер путем аналого-цифрового преобразования (сканирования, фотографирования цифровой фотокамерой, оцифровкой звукового сигнала). В этом случае под анализом изображения понимается как визуальное изучение компьютерной информации в графическом формате, отображенное на мониторе компьютера эксперта, так и его программный анализ с использованием стандартных программных средств, например графических редакторов типа Adobe Photoshop или специально разработанного программного обеспечения. Программный анализ изображений в экспертизах иного рода может трактоваться и по-другому. Так, в судебной компьютерно-технической экспертизе, где этот метод является одним из основных, программный анализ изображений производится, например, на вложенность в графическую среду объекта текстовых сообщений либо графических данных с изображением оттисков печатей.

Методы морфологического анализа. Под морфологией понимают внешнее строение объекта, а также форму, размеры и взаимное расположение (топографию) образующих его структурных элементов (частей целого, включений, деформаций, дефектов и т.п.) на поверхности и в объеме, возникающих при изготовлении, существовании и взаимодействии объекта в расследуемом событии. В эту группу общеэкспертных методов входят методы оптической микроскопии, электронной микроскопии и рентгеноскопические методы.

1. Наиболее распространенными методами морфологического анализа являются методы оптической микроскопии - совокупность методов наблюдения и исследования с помощью оптического микроскопа. Морфологию любого объекта можно изучать, если разные его частицы неодинаково отражают и поглощают свет либо отличаются одна от другой (или от среды) показателем преломления. Эти несходства обусловливают неодинаковость амплитуд или фаз световых волн, прошедших через разные участки образца, от чего, в свою очередь, зависит контрастность изображения. В зависимости от свойств объекта и задач экспертного исследования используются различные методы:

1) метод светлого поля в проходящем свете используется для исследования прозрачных объектов с включениями. Пучок света, проходя через непоглощающие зоны препарата, дает равномерно освещенное поле. Включение на пути пучка частично поглощает его, частично рассеивает, вследствие чего амплитуда прошедшего через включение света будет меньше и частица выглядит темным пятном на светлом фоне;

2) метод темного поля в проходящем свете используется для наблюдения прозрачных неабсорбирующих объектов, невидимых при методе светлого поля. Изображение создается светом, рассеянным элементами структуры препарата, который отличается от среды показателем преломления. В поле зрения микроскопа на темном фоне видны светлые изображения деталей. Наиболее часто методы светлого и темного поля в проходящем свете используются в экспертном исследовании ювелирных камней и объектов биологической природы.;

3) метод светлого поля в отраженном свете применяют для наблюдения непрозрачных объектов. Свет на исследуемый объект падает под углом, и морфология объекта видна вследствие различной отражательной способности его элементов. Метод используется для изучения широкого круга вещественных доказательств: изделия из металлов и сплавов, лакокрасочные покрытия, волокна, документы, следы-отображения и проч.;

4) поляризационная микроскопия используется для исследования анизотропных объектов в поляризованном свете (проходящем и отраженном), например минералов, металлических шлифов, химических волокон;

5) люминесцентная (флуоресцентная) микроскопия использует явление люминесценции. Объект освещается излучением, возбуждающим люминесценцию. При этом наблюдается цветная контрастная картина свечения, позволяющая выявить морфологические и химические особенности объектов. При расследовании уголовного дела необходимо было установить, кому адресована посылка. Она была обшита тканью, адрес написан черными чернилами, но в пути посылка попала под дождь и надпись на ней была полностью уничтожена. Эксперт сфотографировал под микроскопом картину инфракрасной люминесценции, полученную при монохроматическом освещении. На негативе ясно читались адрес и фамилия получателя;

6) микроскопические измерения включают измерения линейных и угловых величин, а также некоторых физических характеристик объектов как в проходящем, так и в отраженном свете (в том числе и поляризованном) при изучении формы микрокристаллов, микрорельефа поверхности исследуемых объектов. Этим методом также производятся измерения показателей преломления микрочастиц прозрачных минералов, стекла, химических волокон и др.;

7) ультрафиолетовая и инфракрасная микроскопия позволяет проводить исследования за пределами видимой области спектра. Ультрафиолетовая микроскопия (250 - 400 нм) применяется для исследования биологических объектов (например, следов крови, спермы); инфракрасная микроскопия (0,75 - 1,2 мкм) дает возможность изучать внутреннюю структуру объектов, непрозрачных в видимом свете (кристаллы, минералы, некоторые стекла, следы выстрела, залитые, заклеенные тексты);

8) стереоскопическая микроскопия позволяет видеть предмет объемным. Применяется для исследования практически всех видов объектов (следы человека и животных, документы, лакокрасочные покрытия, металлы и сплавы, волокна, минералы, пули и гильзы и т.д.). За счет двух окуляров микроскопы дают объемное изображение и, как правило, снабжены насадкой для фотографирования;

9) телевизионная микроскопия позволяет наблюдать микрообъекты на телеэкране, дает возможность чисто электронным путем изменять масштаб, контрастность и яркость изображения.

2. Электронная микроскопия:

1) просвечивающая электронная микроскопия основана на рассеянии электронов без изменения энергии при прохождении их через вещество или материал. Просвечивающий электронный микроскоп используют для изучения деталей микроструктуры объектов, находящихся за пределами разрешающей способности оптического микроскопа (мельче 0,1 мкм). Позволяет исследовать объекты - вещественные доказательства в виде тонких срезов (например, волокон или лакокрасочных покрытий для исследования особенностей морфологии их поверхности) или суспензий (например, горюче-смазочных материалов). Микроскопы просвечивающего типа имеют разрешающую способность в несколько ангстрем (Один ангстрем составляет 0,000001 мм).

2) растровая электронная микроскопия (РЭМ), получившая широкое распространение в экспертных исследованиях, основана на облучении изучаемого объекта хорошо сфокусированным с помощью специальной линзовой системы электронным пучком предельно малого сечения (зонд), обеспечивающим достаточно большую интенсивность ответного сигнала (вторичных электронов) от того участка объекта, на который попадает пучок. Разного рода сигналы представляют информацию об особенностях соответствующего участка объекта. Размер участка определяется сечением зонда (от одного-двух до десятков ангстрем). Чтобы получить информацию о достаточно большой области, дающей представление о морфологии объекта, зонд заставляют сканировать заданную площадь по определенной программе. РЭМ позволяет повысить глубину резкости почти в 300 раз по сравнению с обычным оптическим микроскопом и достигать увеличения до 200000 раз. Широко используется в экспертной практике для микротрасологических исследований, изучения морфологических признаков самых разнообразных микрочастиц: металлов, лакокрасочных покрытий, волос, волокон, почвы, минералов. Многие растровые электронные микроскопы снабжены так называемыми микрозондами - приставками, позволяющими проводить рентгеноспектральный анализ элементного состава изучаемой микрочастицы.

3. Рентгеноскопические методы:

1) высоковольтная рентгеноскопия (дефектоскопия) используется для исследования внутренних дефектов в изделиях из металлов и сплавов или других материалов с большой плотностью. С помощью мощных рентгеновских установок с напряжением до нескольких сотен киловольт дефекты регистрируются либо на специальном экране, либо на рентгеновской пленке контактным или дистанционным методом. Используется для диагностики в инженерно-технологических (детали оборудования, изделия), трасологических (например, пломбы, замки), взрывотехнических (детали взрывных устройств) и некоторых иных экспертизах;

2) низковольтная рентгеноскопия - просвечивание объектов рентгеновскими лучами с помощью маломощных и низковольтных портативных рентгеновских аппаратов или рентгеновских установок для рентгенофазового анализа. Изображение регистрируется на рентгеновской пленке контактным (например, бумажных денег или документов) или дистанционным (например, ювелирных камней, наслоений частиц стекла, металлов, лакокрасочных покрытий на ткани, деталях одежды) способом. Так, при изготовлении подлинных денежных билетов в России используются красители органической природы, в состав которых входят только легкие элементы. Поэтому эти купюры полностью прозрачны для рентгеновского излучения и при просвечивании не образуют тени на пленке или экране. Напротив, поддельные денежные билеты изготовляются с использованием обычных красок, содержащих тяжелые металлы (свинец, железо, медь и проч.). Поэтому при их просвечивании на экране видно четкое изображение купюры;

3) рентгеновская микроскопия позволяет за счет широкого диапазона энергий (от десятков эВ до десятков кэВ) изучать структуру самых различных объектов, от живых клеток до тяжелых металлов. Рентгеновские микроскопы по конструкциям делятся на проекционные, контактные, отражательные и дифракционные. К сожалению, для исследования вещественных доказательств метод пока применяется мало.

Методы анализа состава делятся на методы элементного анализа, методы молекулярного анализа и методы анализа фазового состава.

1. Методы элементного анализа используются для установления элементного состава, т.е. качественного или количественного содержания определенных химических элементов в данном объекте экспертного исследования. Круг их достаточно широк, однако наиболее распространены в экспертной практике перечисленные ниже:

1) эмиссионный спектральный анализ, заключающийся в том, что с помощью источника ионизации вещество пробы переводится в парообразное состояние и возбуждается спектр излучения этих паров. Проходя далее через входную щель специального прибора - спектрографа, излучение с помощью призмы или дифракционной решетки разлагается на отдельные спектральные линии, которые затем регистрируются на фотопластинке или с помощью детектора. Качественный эмиссионный спектральный анализ основан на установлении наличия или отсутствия в полученном спектре аналитических линий искомых элементов, количественный - на измерении интенсивностей спектральных линий, которые пропорциональны концентрациям элементов в пробе. Используется для исследования широкого круга вещественных доказательств - взрывчатых веществ, металлов и сплавов, нефтепродуктов и горюче-смазочных материалов, лаков и красок и др.;

2) лазерный микроспектральный анализ, основан на поглощении сфокусированного лазерного излучения, благодаря высокой интенсивности которого начинается испарение вещества мишени и образуется облако паров - факел, служащий объектом исследования. За счет повышения температуры и других процессов происходит возбуждение и ионизация атомов факела с образованием плазмы, которая является источником анализируемого света. Фокусируя лазерное излучение, можно производить спектральный анализ микроколичеств вещества, локализованных в малых объемах (до 10 куб. см), и устанавливать качественный и количественный элементный состав самых разнообразных объектов практически без их разрушения;

3) рентгеноспектральный анализ. Прохождение рентгеновского излучения через вещество сопровождается поглощением излучения, что приводит атомы вещества в возбужденное состояние. Возврат к исходному состоянию сопровождается излучением спектра характеристического рентгеновского излучения. По наличию спектральных линий различных элементов можно определить качественный, а по их интенсивности - количественный элементный состав вещества. Это один из наиболее удобных методов элементного анализа вещественных доказательств, который на качественном и часто полуколичественном уровне является практически неразрушающим, только в редких случаях при исследовании ряда объектов, как правило, органической природы могут произойти видоизменения отдельных свойств этих объектов. Используется для исследования широкого круга объектов: металлов и сплавов, частиц почвы, лакокрасочных покрытий, материалов документов, следов выстрела и проч.

2. Под молекулярным составом объекта понимают качественное (количественное) содержание в нем простых и сложных химических веществ, для установления которого используются методы молекулярного анализа:

1) химико-аналитические методы, которые традиционно применяются в криминалистике уже десятки лет, например капельный анализ, основанный на проведении таких химических реакций, существенной особенностью которых является манипулирование с капельными количествами растворов анализируемого вещества и реагента. Используют для проведения в основном предварительных исследований ядовитых, наркотических и сильнодействующих, взрывчатых и т.п. веществ. Для осуществления этого метода созданы наборы для работы с определенными видами следов: "Капля", "Капилляр" и др.;

2) микрокристаллоскопия - метод качественного химического анализа по образующимся при действии соответствующих реактивов на исследуемый раствор характерным кристаллическим осадкам. Используется при исследовании следов травления в документах, фармацевтических препаратов, ядовитых и сильнодействующих веществ и проч. Однако основными методами исследования молекулярного состава вещественных доказательств являются в настоящее время молекулярная спектроскопия и хроматография;

3) молекулярная спектроскопия (спектрофотометрия) - метод, позволяющий изучать качественный и количественный молекулярный состав веществ, основанный на изучении спектров поглощения, испускания и отражения электромагнитных волн, а также спектров люминесценции в диапазоне длин волн от ультрафиолетового (УФ) до инфракрасного (ИК) излучения, включает:

а) инфракрасную спектроскопию - метод основан на поглощении молекулами вещества ИК-излучения, что переводит их в возбужденное состояние, и регистрации спектров поглощения с помощью спектрофотометров. Используется для установления состава нефтепродуктов, лакокрасочных покрытий (связующего), парфюмерно-косметических товаров и проч.;

б) спектроскопию в видимой и ультрафиолетовой областях спектра, которая основана на поглощении электромагнитного излучения соединениями, содержащими хромофорные (определяющими окраску вещества) и ауксохромными (не определяющими поглощения, но усиливающими его интенсивность) группы. По спектрам поглощения судят о качественном составе и структуре молекул. Количественный анализ основан на переводе вещества, если оно бесцветно, в поглощающее световой поток окрашенное соединение с помощью определенных реактивов и измерении оптической плотности с помощью специального прибора - фотометра. Оптическая плотность при одинаковой толщине слоя тем больше, чем выше концентрация вещества в растворе. По электронным спектрам устанавливают, например, состав примесей и изменения, происходящие в объекте под воздействием окружающей среды;

4) хроматография используется для анализа сложных смесей веществ, метод основан на различном распределении компонентов между двумя фазами - неподвижной и подвижной. В зависимости от агрегатного состояния элюента различают газовую или жидкостную хроматографию. В газовой хроматографии в качестве подвижной фазы используется газ. Если неподвижной фазой является твердое тело (адсорбент), хроматография называется газоадсорбционной, а если жидкость, нанесенная на неподвижный носитель, - газожидкостной.

В жидкостной хроматографии в качестве подвижной фазы используется жидкость. Аналогично газовой различают жидкостно-адсорбционную и жидкостно-жидкостную хроматографию. Хроматографическое разделение проводят в трубках, заполненных сорбентом (колоночная хроматография), в капиллярах длиной несколько десятков метров (капиллярная хроматография), на пластинках, покрытых слоем адсорбента (тонкослойная хроматография), на бумаге (бумажная хроматография). Методы хроматографии используются при исследовании, например, чернил и паст шариковых ручек, наркотических препаратов, пищевых продуктов и напитков, взрывчатых веществ, красителей, горюче-смазочных материалов и многих других.

3. Методы анализа фазового состава. Под фазовым составом понимают качественное или количественное содержание определенных фаз в данном объекте. Фаза - это гомогенная часть гетерогенной системы, причем в данной химической системе фазы могут иметь одинаковый (альфа-железо и гамма-железо в охотничьем ноже) и различный (закись и окись меди на медном проводе) химический состав. Фазовый состав всех объектов, имеющих кристаллическую структуру, устанавливается с помощью рентгенофазового анализа, который успешно применяется в экспертной практике для неразрушающего исследования самого широкого круга объектов: металлов и сплавов, строительных, лакокрасочных материалов, фармацевтических препаратов, парфюмерно-косметических изделий, взрывчатых веществ и др. Метод основан на неповторимости расположения атомов и ионов в кристаллических структурах веществ, которые отражаются в соответствующих рентгенометрических данных. Анализ этих данных и позволяет устанавливать качественный и количественный фазовый состав.

Часто фазовый состав одновременно дает представление и о структуре объектов.

Методы анализа структуры объектов. Металлографический и рентгеноструктурный анализы используются для изучения кристаллической структуры объектов. С помощью металлографического анализа изучаются изменения макро- и микроструктуры металлов и сплавов в связи с изменением их химического состава и условий обработки. Рентгеноструктурный анализ позволяет определять ориентацию и размеры кристаллов, их атомное и ионное строение, измерять внутреннее напряжение, изучать превращения, происшедшие в материалах под влиянием давления, температуры, влажности, и, основываясь на полученных данных, судить о "биографии", источнике происхождения, способе изготовления той или иной детали; по разрушениям определять причины пожара, взрыва или автодорожного происшествия.

В последнее время наряду с традиционным пониманием методов анализа структуры появилась и интерпретация данного термина, связанная с внедрением во все сферы человеческой деятельности компьютерных технологий. К методам анализа структуры относят и исследование структуры данных в судебной компьютерно-технической и судебно-экономической экспертизах. Эксперт прежде всего уясняет способ их объединения, взаимное расположение нескольких элементов данных, рассматриваемых как одно целое (например, файл базы данных). Особенно наглядны методы анализа структуры при изучении системы организации файлов и каталогов, включающие в себя как анализ структуры каталогов и файлов, так и правила их создания и манипулирования ими.

Методы исследования отдельных свойств могут быть самыми разнообразными. При исследовании вещественных доказательств исследуются, например, электропроводность объектов (электропроводов или обугленных остатков древесины при определении очага пожара), магнитная проницаемость (для диагностики изменения маркировки), микротвердость (для исследования следов газокислородной резки, сварных швов и шлаков при установлении механизма вскрытия металлических хранилищ), концентрационные пределы вспышки и воспламенения, температура воспламенения и самовоспламенения, свойства программных объектов и многое другое. Круг изучаемых свойств непрерывно расширяется при разработке новых методик предварительного и экспертного исследования, изучении новых объектов.