Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы Петров.doc
Скачиваний:
12
Добавлен:
10.09.2019
Размер:
1.09 Mб
Скачать

Достатні умови

В деяких випадках необхідні умови є також достатніми для оптимальності. Зокрема це відбувається якщо функція і обмеження-нерівності є неперервно диференційовними опуклими функціями, а обмеження-рівності є афінними функціями. Ця ж властивість виконується також якщо функція мети і обмеження-нерівності є так званими інвексними функціями.

23. Двоїстість в задачі опуклого програмування. Приклади.

Под двойственной задачей понимается вспомогательная задача линейного программирования, формулируемая с помощью определённых правил непосредственно из условий прямой задачи. Заинтересованность в определении оптимального решения прямой задачи путём решения двойственной к ней задачи обусловлена тем, что вычисления при решении ДЗ могут оказаться менее сложными. Трудоёмкость вычислений при решении ЗЛП в большей степени зависит от числа ограничений, а не от количества переменных.

Виды математических моделей двойственных задач

Основываясь на рассмотренных несимметричных и симметричных двойственных задач отметим, что пары двойственных задач математических моделей могут быть представлены следующим образом:

  • Симметричные задачи

(1) Исходная задача Двойственная задача

Zmin=CX; fmax =Y>A0;

AX=A0; YA=С

X>0 Y>0

(2) Исходная задача Двойственная задача

Zmax =CX; fmin =YA0;

AX=A0; YA=С

X>0 Y>0

  • Несимметричные задачи

(3) Исходная задача Двойственная задача

Zmin=CX; fmax=YA0;

AX=A0; YA=С

X>0

(4) Исходная задача Двойственная задача

Zmax=CX; fmin=YA0;

AX=A0; YA=С

X>0

Поэтому до того, как сформулировать двойственную задачу для данной исходной, необходимо систему ограничений исходной задачи преобразовать должным образом.

24. Наближені чисельні методи оптимізації.

Метод перебора

Метод поразрядного поиска

Метод деления попалам

Метод золотого сечения

3. Методы безусловной минимизации функций многих переменных.

3.1. Многомерный поиск без использования производных

Метод циклического покоординатного спуска

Метод Хука и Дживса

Метод Розенброка

Метод минимизации по правильному симплексу

Метод минимизации по деформируемому симплексу

3.2. Многомерный поиск, использующий производные

Метод наискорейшего спуска

3.3. Методы, использующие сопряженные направления

Метод Дэвидона-Флетчера-Пауэлла

25. Метод деления пополам Метод деления пополам

Рассмотрим функцию F, которую требуется минимизировать на интервале [a1, b1]. Предположим, что F строго квазивыпукла. Очевидно, что наименьшее число вычислений значений функции , которые необходимы для сокращения интервала неопределенности, равно двум. Одной из стратегий является выбор этих двух точек симметрично на расстоянии eps>0 от середины интервала. Здесь число eps настолько мало, чтобы длина нового интервала неопределенности eps+(b1-a1)/2 являлась достаточно близкой к теоретическому значению (b1-a1)/2, и в то же время такое, чтобы значение функции в этих двух точках были различимы.

Алгоритм дихотомического поиска Алгоритм дихотомического метода для минимизации строго квазивыпуклой фунции на интервале [a1,b1].

Начальный этап. Выбрать константу различимости 2еps > 0 и допустимую конечную длину интервала неопределенности l > 0. Пусть [a1,b1] - начальный интервал неопределенности. Положить k=1 и перейти к основному этапу.

Основной этап.

Шаг 1. Если bk-ak < l, то остановиться; точка минимума принадлежит интервалу [ak,bk]. В противном случае вычислить pk=(ak+bk)/2-eps qk=(ak+bk)/2+eps и перейти к шагу 2.

Шаг2. Если F(pk) < F(qk), положить a[k+1]=ak и b[k+1]=qk. В противном случае положить a[k+1]=pk и b[k+1]=bk. Заменить k на k+1 и перейти к шагу 1.