Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курс проект по Эвм МГГУ.doc
Скачиваний:
30
Добавлен:
26.08.2019
Размер:
1.53 Mб
Скачать

Выбор среды передачи данных

Кабели на основе неэкранированной витой пары

Витые пары проводов используются в дешевых и сегодня, пожалуй, самых популярных кабелях. Кабель на основе витых пар представляет собой несколько пар скрученных попарно изолированных медных проводов в единой диэлектрической (пластиковой) оболочке. Он довольно гибкий и удобный для прокладки. Скручивание проводов позволяет свести к минимуму индуктивные наводки кабелей друг на друга и снизить влияние переходных процессов. Обычно в кабель входит две (рис. 5) или четыре витые пары.

Рис. 5  «Кабель с витыми парами»

Неэкранированные витые пары характеризуются слабой защищенностью от внешних электромагнитных помех, а также от подслушивания, которое может осуществляться с целью, например, промышленного шпионажа. Причем перехват передаваемой по сети информации возможен как с помощью контактного метода (например, посредством двух иголок, воткнутых в кабель), так и с помощью бесконтактного метода, сводящегося к радиоперехвату излучаемых кабелем электромагнитных полей. Причем действие помех и величина излучения вовне увеличивается с ростом длины кабеля. Для устранения этих недостатков применяется экранирование кабелей.

В случае экранированной витой пары STP каждая из витых пар помещается в металлическую оплетку-экран для уменьшения излучений кабеля, защиты от внешних электромагнитных помех и снижения взаимного влияния пар проводов друг на друга (crosstalk -перекрестные наводки). Для того чтобы экран защищал от помех, он должен быть обязательно заземлен. Естественно, экранированная витая пара заметно дороже, чем неэкранированная. Ее использование требует специальных экранированных разъемов. Поэтому встречается она значительно реже, чем неэкранированная витая пара.

Основные достоинства неэкранированных витых пар – простота монтажа разъемов на концах кабеля, а также ремонта любых повреждений по сравнению с другими типами кабеля. Все остальные характеристики у них хуже, чем у других кабелей. Например, при заданной скорости передачи затухание сигнала (уменьшение его уровня по мере прохождения по кабелю) у них больше, чем у коаксиальных кабелей. Если учесть еще низкую помехозащищенность, то понятно, почему линии связи на основе витых пар, как правило, довольно короткие (обычно в пределах 100 метров). В настоящее время витая пара используется для передачи информации на скоростях до 1000 Мбит/с, хотя технические проблемы, возникающие при таких скоростях крайне сложны.

Согласно стандарту EIA/TIA 568, существуют пять основных и две дополнительные категории кабелей на основе неэкранированной витой пары (UTP):

Кабель категории 1 - это обычный телефонный кабель (пары проводов не витые), по которому можно передавать только речь. Этот тип кабеля имеет большой разброс параметров (волнового сопротивления, полосы пропускания, перекрестных наводок).

Кабель категории 2 - это кабель из витых пар для передачи данных в полосе частот до 1 МГц. Кабель не тестируется на уровень перекрестных наводок. В настоящее время он используется очень редко. Стандарт EIA/TIA 568 не различает кабели категорий 1 и 2.

Кабель категории 3 - это кабель для передачи данных в полосе частот до 16 МГц, состоящий из витых пар с девятью витками проводов на метр длины. Кабель тестируется на все параметры и имеет волновое сопротивление 100 Ом. Это самый простой тип кабелей, рекомендованный стандартом для локальных сетей. Еще недавно он был самым распространенным, но сейчас повсеместно вытесняется кабелем категории 5.

Кабель категории 4 - это кабель, передающий данные в полосе частот до 20 МГц. Используется редко, так как не слишком заметно отличается от категории 3. Стандартом рекомендуется вместо кабеля категории 3 переходить сразу на кабель категории 5. Кабель категории 4 тестируется на все параметры и имеет волновое сопротивление 100 Ом. Кабель был создан для работы в сетях по стандарту IEEE 802.5.

Кабель категории 5 - в настоящее время самый совершенный кабель, рассчитанный на передачу данных в полосе частот до 100 МГц. Состоит из витых пар, имеющих не менее 27 витков на метр длины (8 витков на фут). Кабель тестируется на все параметры и имеет волновое сопротивление 100 Ом. Рекомендуется применять его в современных высокоскоростных сетях типа Fast Ethernet и TPFDDI. Кабель категории 5 примерно на 30-50% дороже, чем кабель категории 3.

Кабель категории 6 - перспективный тип кабеля для передачи данных в полосе частот до 200 (или 250) МГц.

Кабель категории 7 - перспективный тип кабеля для передачи данных в полосе частот до 600 МГц.

Согласно стандарту EIA/TIA 568, полное волновое сопротивление наиболее совершенных кабелей категорий 3, 4 и 5 должно составлять 100 Ом ±15% в частотном диапазоне от 1 МГц до максимальной частоты кабеля. Требования не очень жесткие: величина волнового сопротивления может находиться в диапазоне от 85 до 115 Ом. Здесь же следует отметить, что волновое сопротивление экранированной витой пары STP по стандарту должно быть равным 150 Ом ±15%. Для согласования сопротивлений кабеля и оборудования в случае их несовпадения применяют согласующие трансформаторы (Balun). Существует также экранированная витая пара с волновым сопротивлением 100 Ом, но используется она довольно редко.

Второй важнейший параметр, задаваемый стандартом, - это максимальное затухание сигнала, передаваемого по кабелю, на разных частотах. В таблице 3 приведены предельные значения величины затухания в децибелах для кабелей категорий 3, 4 и 5 на расстояние 1000 футов (то есть 305 метров) при нормальной температуре окружающей среды 20°С.

Таблица. Максимальное затухание в кабелях

Частота, МГц

Максимальное затухание, дБ

Категория 3

Категория 4

Категория 5

0,064

2,8

2,3

2,2

0,256

4,0

3,4

3,2

0,512

5,6

4,6

4,5

0,772

6,8

5,7

5,5

1,0

7,8

6,5

6,3

4,0

17

13

13

8,0

26

19

18

10,0

30

22

20

16,0

40

27

25

20,0

-

31

28

25,0

-

-

32

Из таблицы видно, что величины затухания на частотах, близких к предельным, для всех кабелей очень значительны. Даже на небольших расстояниях сигнал ослабляется в десятки и сотни раз, что предъявляет высокие требования к приемникам сигнала.

Коаксиальный кабель

Коаксиальный кабель представляет собой электрический кабель, состоящий из центрального медного провода и металлической оплетки (экрана), разделенных между собой слоем диэлектрика (внутренней изоляции) и помещенных в общую внешнюю оболочку (рис. 6).

Рис. 6  «Коаксиальный кабель»

Коаксиальный кабель до недавнего времени был очень популярен, что связано с его высокой помехозащищенностью (благодаря металлической оплетке), более широкими, чем в случае витой пары, полосами пропускания (свыше 1ГГц), а также большими допустимыми расстояниями передачи (до километра). К нему труднее механически подключиться для несанкционированного прослушивания сети, он дает также заметно меньше электромагнитных излучений вовне. Однако монтаж и ремонт коаксиального кабеля существенно сложнее, чем витой пары, а стоимость его выше (он дороже примерно в 1,5 - 3 раза). Сложнее и установка разъемов на концах кабеля. Сейчас его применяют реже, чем витую пару. Стандарт EIA/TIA-568 включает в себя только один тип коаксиального кабеля, применяемый в сети Ethernet.

Основное применение коаксиальный кабель находит в сетях с топологией типа шина. При этом на концах кабеля обязательно должны устанавливаться терминаторы для предотвращения внутренних отражений сигнала, причем один (и только один!) из терминаторов должен быть заземлен. Без заземления металлическая оплетка не защищает сеть от внешних электромагнитных помех и не снижает излучение передаваемой по сети информации во внешнюю среду. Но при заземлении оплетки в двух или более точках из строя может выйти не только сетевое оборудование, но и компьютеры, подключенные к сети. Терминаторы должны быть обязательно согласованы с кабелем, необходимо, чтобы их сопротивление равнялось волновому сопротивлению кабеля. Например, если используется 50-омный кабель, для него подходят только 50-омные терминаторы.

Реже коаксиальные кабели применяются в сетях с топологией звезда (например, пассивная звезда в сети Arcnet). В этом случае проблема согласования существенно упрощается, так как внешних терминаторов на свободных концах не требуется.

Волновое сопротивление кабеля указывается в сопроводительной документации. Чаще всего в локальных сетях применяются 50-омные (RG-58, RG-11, RG-8) и 93-омные кабели (RG-62). Распространенные в телевизионной технике 75-омные кабели в локальных сетях не используются. Марок коаксиального кабеля немного. Он не считается особо перспективным. Не случайно в сети Fast Ethernet не предусмотрено применение коаксиальных кабелей. Однако во многих случаях классическая шинная топология (а не пассивная звезда) очень удобна. Как уже отмечалось, она не требует применения дополнительных устройств – концентраторов.

Существует два основных типа коаксиального кабеля:

  • тонкий (thin) кабель, имеющий диаметр около 0,5 см, более гибкий;

  • толстый (thick) кабель, диаметром около 1 см, значительно более жесткий. Он представляет собой классический вариант коаксиального кабеля, который уже почти полностью вытеснен современным тонким кабелем.

Тонкий кабель используется для передачи на меньшие расстояния, чем толстый, поскольку сигнал в нем затухает сильнее. Зато с тонким кабелем гораздо удобнее работать: его можно оперативно проложить к каждому компьютеру, а толстый требует жесткой фиксации на стене помещения. Подключение к тонкому кабелю (с помощью разъемов BNC байонетного типа) проще и не требует дополнительного оборудования. А для подключения к толстому кабелю надо использовать специальные довольно дорогие устройства, прокалывающие его оболочки и устанавливающие контакт как с центральной жилой, так и с экраном. Толстый кабель примерно вдвое дороже, чем тонкий, поэтому тонкий кабель применяется гораздо чаще.

Как и в случае витых пар, важным параметром коаксиального кабеля является тип его внешней оболочки. Точно так же в данном случае применяются как non-plenum (PVC), так и plenum кабели. Естественно, тефлоновый кабель дороже поливинилхлоридного. Обычно тип оболочки можно отличить по окраске (например, для PVC кабеля фирма Belden использует желтый цвет, а для тефлонового - оранжевый).

Типичные величины задержки распространения сигнала в коаксиальном кабеле составляют для тонкого кабеля около 5 нс/м, а для толстого - около 4,5 нс/м.

Существуют варианты коаксиального кабеля с двойным экраном (один экран расположен внутри другого и отделен от него дополнительным слоем изоляции). Такие кабели имеют лучшую помехозащищенность и защиту от прослушивания, но они немного дороже обычных.

В настоящее время считается, что коаксиальный кабель устарел, в большинстве случаев его вполне может заменить витая пара или оптоволоконный кабель. И новые стандарты на кабельные системы уже не включают его в перечень типов кабелей.

Оптоволоконные кабели

Оптоволоконный (он же волоконно-оптический) кабель - это принципиально иной тип кабеля по сравнению с рассмотренными двумя типами электрического или медного кабеля. Информация по нему передается не электрическим сигналом, а световым. Главный его элемент – это прозрачное стекловолокно, по которому свет проходит на огромные расстояния (до десятков километров) с незначительным ослаблением.

Рис. 7  «Структура оптоволоконного кабеля»

Структура оптоволоконного кабеля очень проста и похожа на структуру коаксиального электрического кабеля. Только вместо центрального медного провода здесь используется тонкое (диаметром около 1 - 10 мкм) стекловолокно, а вместо внутренней изоляции - стеклянная или пластиковая оболочка, не позволяющая свету выходить за пределы стекловолокна. В данном случае речь идет о режиме так называемого полного внутреннего отражения света от границы двух веществ с разными коэффициентами преломления (у стеклянной оболочки коэффициент преломления значительно ниже, чем у центрального волокна). Металлическая оплетка кабеля обычно отсутствует, так как экранирование от внешних электромагнитных помех здесь не требуется. Однако иногда ее все-таки применяют для механической защиты от окружающей среды (такой кабель иногда называют броневым, он может объединять под одной оболочкой несколько оптоволоконных кабелей).

Оптоволоконный кабель обладает исключительными характеристиками по помехозащищенности и секретности передаваемой информации. Никакие внешние электромагнитные помехи в принципе не способны исказить световой сигнал, а сам сигнал не порождает внешних электромагнитных излучений. Подключиться к этому типу кабеля для несанкционированного прослушивания сети практически невозможно, так как при этом нарушается целостность кабеля. Теоретически возможная полоса пропускания такого кабеля достигает величины 1012 Гц, то есть 1000 ГГц, что несравнимо выше, чем у электрических кабелей. Стоимость оптоволоконного кабеля постоянно снижается и сейчас примерно равна стоимости тонкого коаксиального кабеля.

Типичная величина затухания сигнала в оптоволоконных кабелях на частотах, используемых в локальных сетях, составляет от 5 до 20 дБ/км, что примерно соответствует показателям электрических кабелей на низких частотах. Но в случае оптоволоконного кабеля при росте частоты передаваемого сигнала затухание увеличивается очень незначительно, и на больших частотах (особенно свыше 200 МГц) его преимущества перед электрическим кабелем неоспоримы, у него просто нет конкурентов. Однако оптоволоконный кабель имеет и некоторые недостатки.

Самый главный из них – высокая сложность монтажа (при установке разъемов необходима микронная точность, от точности скола стекловолокна и степени его полировки сильно зависит затухание в разъеме). Для установки разъемов применяют сварку или склеивание с помощью специального геля, имеющего такой же коэффициент преломления света, что и стекловолокно. В любом случае для этого нужна высокая квалификация персонала и специальные инструменты. Поэтому чаще всего оптоволоконный кабель продается в виде заранее нарезанных кусков разной длины, на обоих концах которых уже установлены разъемы нужного типа. Следует помнить, что некачественная установка разъема резко снижает допустимую длину кабеля, определяемую затуханием.

Также надо помнить, что использование оптоволоконного кабеля требует специальных оптических приемников и передатчиков, преобразующих световые сигналы в электрические и обратно, что порой существенно увеличивает стоимость сети в целом.

Оптоволоконные кабели допускают разветвление сигналов (для этого производятся специальные пассивные разветвители (couplers) на 2-8 каналов), но, как правило, их используют для передачи данных только в одном направлении между одним передатчиком и одним приемником. Ведь любое разветвление неизбежно сильно ослабляет световой сигнал, и если разветвлений будет много, то свет может просто не дойти до конца сети. Кроме того, в разветвителе есть и внутренние потери, так что суммарная мощность сигнала на выходе меньше входной мощности.

Оптоволоконный кабель менее прочен и гибок, чем электрический. Типичная величина допустимого радиуса изгиба составляет около 10 - 20 см, при меньших радиусах изгиба центральное волокно может сломаться. Плохо переносит кабель и механическое растяжение, а также раздавливающие воздействия.

Чувствителен оптоволоконный кабель и к ионизирующим излучениям, из-за которых снижается прозрачность стекловолокна, то есть увеличивается затухание сигнала. Резкие перепады температуры также негативно сказываются на нем, стекловолокно может треснуть.

Применяют оптоволоконный кабель только в сетях с топологией звезда и кольцо. Никаких проблем согласования и заземления в данном случае не существует. Кабель обеспечивает идеальную гальваническую развязку компьютеров сети. В будущем этот тип кабеля, вероятно, вытеснит электрические кабели или, во всяком случае, сильно потеснит их. Запасы меди на планете истощаются, а сырья для производства стекла более чем достаточно.

Существуют два различных типа оптоволоконного кабеля: одномодовый и многомодовый кабель, более дешевый, но менее качественный.

Одномодовый кабель, более дорогой, но имеет лучшие характеристики по сравнению с первым.

Суть различия между этими двумя типами сводится к разным режимам прохождения световых лучей в кабеле.

Рис. 8  «Распространение света в одномодовом кабеле»

В одномодовом кабеле практически все лучи проходят один и тот же путь, в результате чего они достигают приемника одновременно, и форма сигнала почти не искажается. Одномодовый кабель имеет диаметр центрального волокна около 1,3 мкм и передает свет только с такой же длиной волны (1,3 мкм). Дисперсия и потери сигнала при этом очень незначительны, что позволяет передавать сигналы на значительно большее расстояние, чем в случае применения многомодового кабеля. Для одномодового кабеля применяются лазерные приемопередатчики, использующие свет исключительно с требуемой длиной волны. Такие приемопередатчики пока еще сравнительно дороги и не долговечны. Однако в перспективе одномодовый кабель должен стать основным типом благодаря своим прекрасным характеристикам. К тому же лазеры имеют большее быстродействие, чем обычные светодиоды. Затухание сигнала в одномодовом кабеле составляет около 5 дБ/км и может быть даже снижено до 1 дБ/км.

Рис. 9  «Распространение света в многомодовом кабеле»

В многомодовом кабеле траектории световых лучей имеют заметный разброс, в результате чего форма сигнала на приемном конце кабеля искажается. Центральное волокно имеет диаметр 62,5 мкм, а диаметр внешней оболочки 125 мкм (это иногда обозначается как 62,5/125). Для передачи используется обычный (не лазерный) светодиод, что снижает стоимость и увеличивает срок службы приемопередатчиков по сравнению с одномодовым кабелем. Длина волны света в многомодовом кабеле равна 0,85 мкм, при этом наблюдается разброс длин волн около 30 - 50 нм. Допустимая длина кабеля составляет 2 - 5 км. Многомодовый кабель - это основной тип оптоволоконного кабеля в настоящее время, так как он дешевле и доступнее. Затухание в многомодовом кабеле больше, чем в одномодовом и составляет 5 - 20 дБ/км.

Типичная величина задержки для наиболее распространенных кабелей составляет около 4-5 нс/м, что близко к величине задержки в электрических кабелях.

Оптоволоконные кабели, как и электрические, выпускаются в исполнении plenum и non-plenum.

Эталонная модель OSI

Общие сведения об эталонной модели

При связи компьютеров по сети производится множество операций, обеспечивающих передачу данных от компьютера к компьютеру. Пользователю, работающему с каким-то приложением, в общем-то безразлично, что и как при этом происходит. Для него просто существует доступ к другому приложению или компьютерному ресурсу, расположенному на другом компьютере сети. В действительности же вся передаваемая информация проходит много этапов обработки. Прежде всего она разбивается на блоки, каждый из которых снабжается управляющей информацией. Полученные блоки оформляются в виде сетевых пакетов, эти пакеты кодируются, передаются с помощью электрических или световых сигналов по сети в соответствии с выбранным методом доступа, затем из принятых пакетов вновь восстанавливаются заключенные в них блоки данных, блоки соединяются в данные, которые и становятся доступны другому приложению. Это, конечно, очень упрощенное описание происходящих процессов. Часть из указанных процедур реализуется только программно, другая - аппаратно, а какие-то операции могут выполняться как программами, так и аппаратурой.

Упорядочить все выполняемые процедуры, разделить их на уровни и подуровни, взаимодействующие между собой, как раз и призваны модели сетей. Эти модели позволяют правильно организовать взаимодействие как абонентам внутри одной сети, так и самым разным сетям на различных уровнях. Наибольшее распространение получила в настоящее время так называемая эталонная модель обмена информацией открытой системы OSI (Open System Interchange). Под термином «открытая система» в данном случае понимается незамкнутая в себе система, имеющая возможность взаимодействия с какими-то другими системами (в отличие от закрытой системы).

Модель OSI была предложена Международной организацией стандартов ISO (International Standards Organization) в 1984 году. С тех пор ее используют (более или менее строго) все производители сетевых продуктов. Как и любая универсальная модель, модель OSI довольно громоздка, избыточна и не слишком гибка, поэтому реальные сетевые средства, предлагаемые различными фирмами, не обязательно придерживаются принятого разделения функций. Эталонная модель OSI стала основной архитектурной моделью для систем передачи сообщений. При рассмотрении конкретных прикладных телекоммуникационных систем производится сравнение их архитектуры с моделью OSI/ISO. Эта модель является наилучшим средством для изучения современной технологии связи.

Эталонная модель OSI делит проблему передачи информации между абонентами на семь менее крупных и, следовательно, более легко разрешимых задач. Конкретизация каждой задачи производилась по принципу относительной автономности. Очевидно, автономная задача решается легче.

Каждой из семи областей проблемы передачи информации ставится в соответствие один из уровней эталонной модели. Два самых низших уровня эталонной модели OSI реализуются аппаратным и программным обеспечением, остальные пять высших уровней, как правило, реализуются программным обеспечением. Эталонная модель OSI описывает, каким образом информация проходит через среду передачи (например, металлические провода) от прикладного процесса-источника (например, по передаче речи) до процесса-получателя.

В рамках модели OSI взаимодействие двух систем представляется фактически в виде двух моделей - горизонтальной и вертикальной:

в рамках горизонтальной модели рассматривается прямое взаимодействие (обмен данными) одинаковых уровней в двух конечных точках (хостах); для организации такого взаимодействия в каждой из конечных точек должны поддерживаться одинаковые протоколы для данного уровня;

в вертикальной модели рассматривается обмен информацией (взаимодействие) между соседними уровнями одной системы с использованием интерфейсов API; в этой модели каждый уровень может предоставлять свои услуги вышележащему уровню и пользоваться услугами нижележащего уровня (крайние уровни модели в этом смысле представляют исключение - прикладной уровень предоставляет свои услуги пользователю, а сетевой уровень не пользуется сервисом других уровней)

Физический уровень отвечает за подключение к физической среде передачи (медь, оптика. радио). Этот уровень получает кадры данных от канального уровня и преобразует их в оптические или электрические сигналы, соответствующие значениям битов в потоке данных. Эти сигналы посылаются через среду передачи на приемный узел. На физическом уровне определяются свойства среды передачи, включая:

типы кабелей и разъемов

разводку контактов в разъемах

схему кодирования сигналов для значений 0 и 1 (модуляция)

Канальный уровень обеспечивает безошибочную передачу блоков данных (называемых на этом уровне кадрами (frame)) через физический уровень , который при передаче может искажать данные. Этот уровень должен определять начало и конец кадра в битовом потоке, формировать из данных, передаваемых физическим уровнем, кадры или последовательности кадров, включать процедуру проверки наличия ошибок и их исправления. Этот уровень (и только он) оперирует такими элементами, как битовые последовательности, методы кодирования, маркеры. Он несёт ответственность за правильную передачу данных (пакетов) на участках между непосредственно связанными элементами сети. Обеспечивает управление доступом к среде передачи.

Этот уровень довольно сложен, поэтому часто он делится на подуровни, например, в стандартах IEEE канальный уровень подразделяется на два подуровня: MAC (Medium Access Control) -- управление доступом к среде и LLC (Logical Link Control) -- управление логической связью (каналом). Уровень MAC управляет доступом к сети (с передачей маркера в сетях Token Ring или распознаванием конфликтов (столкновений передач) в сетях типа Ethernet) и управлением сетью. Уровень LLC, действующий над уровнем MAC, и есть собственно тот уровень, который посылает и получает сообщения с данными.

Сетевой уровень отвечает за деление пользователей на группы (адресацию) и управление сетью.

Этот уровень пользуется возможностями, предоставляемыми ему канальным уровнем , для обеспечения связи любых двух точек в сети. Любых, необязательно смежных. Этот уровень осуществляет проводку сообщений по сети, которая может иметь много линий связи, или по множеству совместно работающих сетей, что требует маршрутизации, т.е. определения пути, по которому следует пересылать данные. Маршрутизация производится на этом же уровне. Выполняет обработку адресов, а также мультиплексирование и демультиплексирование.

Основной функцией программного обеспечения на этом уровне является выборка информации из источника, преобразование её в пакеты и правильная передача в точку назначения. Есть два принципиально различных способа работы сетевого уровня.

Первый - это метод виртуальных каналов. Он состоит в том, что канал связи устанавливается при вызове (в начале сеанса (session) связи), по нему передаётся информация, и по окончании передачи канал закрывается (уничтожается). Передача пакетов происходит с сохранением исходной последовательности, даже если пакеты пересылаются по различным физическим маршрутам, т.е. виртуальный канал динамически перенаправляется. При помещении данных в этот канал не требуется указания адреса пункта назначения, т.к. он определяется во время установления связи.

Второй - метод дейтаграмм. Дейтаграммы - независимые пакеты, они включают всю необходимую для их пересылки информацию.

В то время, как первый метод предоставляет следующему уровню (транспортному уровню ) надёжный канал передачи данных, свободный от искажений (ошибок) и правильно доставляющий пакеты в пункт назначения, второй метод требует от следующего уровня работы над ошибками и проверки доставки нужному адресату.

На этом уровне происходит маршрутизация пакетов на основе преобразования MAC-адресов в сетевые адреса. Сетевой уровень обеспечивает передачу пакетов на транспортный уровень.

Транспортный уровень определяет протоколы обмена сообщениями и обеспечивает сквозное управление потоком данных через сеть.

Регламентирует пересылку данных между процессами, выполняемыми на компьютерах сети. Завершает организацию передачи данных: контролирует на сквозной основе поток данных, проходящий по маршруту, определённому третьим уровнем: правильность передачи блоков данных, правильность доставки в нужный пункт назначения, их комплектность, сохранность, порядок следования. Собирает информацию из блоков в её прежний вид. Или же оперирует с дейтаграммами, т.е. ожидает отклика-подтверждения приёма из пункта назначения, проверяет правильность доставки и адресации, повторяет посылку дейтаграммы, если не пришёл отклик. В рамках транспортного протокола предусмотрено пять классов качества транспортировки и соответствующие процедуры управления. Этот же уровень должен включать развитую и надёжную схему адресации для обеспечения связи через множество сетей и шлюзов. Другими словами, задачей данного уровня является довести до ума передачу информации из любой точки в любую другую во всей сети.

Транспортный уровень скрывает от всех высших уровней все детали и проблемы передачи данных, характерные для используемого типа передающей сети. Таким образом, он обеспечивает стандартное взаимодействие лежащего над ним уровня с приёмом-передачей информации независимо от конкретной технической реализации этой передачи, от используемых сетей и т.д.

Сеансовый уровень отвечает за организацию и поддержку соединений между сессиями, администрирование и безопасность сети.

Координирует взаимодействие связывающихся процессов (работающих программ): устанавливает их связь, оперирует с ней, восстанавливает аварийно оконченные сеансы. Он координирует не компьютеры и устройства, а процессы в сети, поддерживает их взаимодействие -- управляет сеансами связи между процессами прикладного уровня. Этот же уровень ответственен за картографию сети -- он преобразовывает адреса, удобные для людей, в реальные сетевые адреса, например, в Internet это соответствует преобразованию региональных (доменных) компьютерных имён в числовые адреса Internet, и наоборот.

Уровень представления имеет дело с синтаксисом и семантикой передаваемой информации, т.е. здесь устанавливается взаимопонимание двух сообщающихся компьютеров относительно того, как они представляют и понимают по получении передаваемую информацию. Здесь решаются такие задачи, как преобразование данных (кодирование, компрессия и т.п.) прикладного уровня в поток информации для транспортного уровня, перекодировка текстовой информации и изображений, сжатие и распаковка, поддержка сетевых файловых систем (NFS), абстрактных структур данных и т.д.

Прикладной уровень отвечает за доступ приложений в сеть. Обеспечивает интерфейс между пользователем и сетью, делает доступными для человека всевозможные услуги. На этом уровне реализуется, по крайней мере, пять прикладных служб: передача файлов, удалённый терминальный доступ, электронная передача сообщений, справочная служба и управление сетью. В конкретной реализации определяется пользователем (программистом) согласно его насущным нуждам и возможностям его кошелька, интеллекта и фантазии.

Протоколы уровней модели OSI

Уровни взаимодействуют сверху вниз и снизу вверх посредством интерфейсов и могут еще взаимодействовать с таким же уровнем другой системы с помощью протоколов.

Протоколы, использующиеся на каждом уровне модели OSI, представлены в таблице 2.

Таблица 2

Уровень OSI

Протоколы

Прикладной

HTTP, gopher, Telnet, DNS, SMTP, SNMP, CMIP, FTP, TFTP, SSH, IRC, AIM, NFS, NNTP, NTP, SNTP, XMPP, FTAM, APPC, X.400, X.500, AFP, LDAP, SIP, ITMS, Modbus TCP, BACnet IP, IMAP, POP3, SMB, MFTP, BitTorrent, eD2k, PROFIBUS

Представления

HTTP, ASN.1, XML-RPC, TDI, XDR, SNMP, FTP, Telnet, SMTP, NCP, AFP

Сеансовый

ASP, ADSP, DLC, Named Pipes, NBT, NetBIOS, NWLink, Printer Access Protocol, Zone Information Protocol, SSL, TLS, SOCKS

Транспортный

TCP, UDP, NetBEUI, AEP, ATP, IL, NBP, RTMP, SMB, SPX, SCTP, DCCP, RTP, TFTP

Сетевой

IP, IPv6, ICMP, IGMP, IPX, NWLink, NetBEUI, DDP, IPSec, ARP, RARP, DHCP, BootP, SKIP, RIP

Канальный

STP, ARCnet, ATM, DTM, SLIP, SMDS, Ethernet, FDDI, Frame Relay, LocalTalk, Token ring, StarLan, L2F, L2TP, PPTP, PPP, PPPoE, PROFIBUS

Физический

RS-232, RS-422, RS-423, RS-449, RS-485, ITU-T, xDSL, ISDN, T-carrier (T1, E1), модификации стандарта Ethernet: 10BASE-T, 10BASE2, 10BASE5, 100BASE-T (включает 100BASE-TX, 100BASE-T4, 100BASE-FX), 1000BASE-T, 1000BASE-TX, 1000BASE-SX

Характеристики технологий FDDI, Ethernet, Token Ring

Следует понимать, что подавляющее большинство современных сетей в силу исторических причин лишь в общих чертах, приближённо, соответствуют эталонной модели ISO/OSI.

Реальный стек протоколов OSI, разработанный как часть проекта, был воспринят многими как слишком сложный и фактически нереализуемый. Он предполагал упразднение всех существующих протоколов и их замену новыми на всех уровнях стека. Это сильно затруднило реализацию стека и послужило причиной для отказа от него многих поставщиков и пользователей, сделавших значительные инвестиции в другие сетевые технологии. В дополнение, протоколы OSI разрабатывались комитетами, предлагавшими различные и иногда противоречивые характеристики, что привело к объявлению многих параметров и особенностей необязательными. Поскольку слишком многое было необязательно или предоставлено на выбор разработчика, реализации различных поставщиков просто не могли взаимодействовать, отвергая тем самым саму идею проекта OSI.

В результате попытка OSI договориться об общих стандартах сетевого взаимодействия была вытеснена стеком протоколов TCP/IP, используемым в Интернете, и его более простым, прагматичным подходом к компьютерным сетям. Подход Интернета состоял в создании простых протоколов с двумя независимыми реализациями, требующимися для того, чтобы протокол мог считаться стандартом. Это подтверждало практическую реализуемость стандарта. Например, определения стандартов электронной почты X.400 состоят из нескольких больших томов, а определение электронной почты Интернета (SMTP) — всего несколько десятков страниц в RFC 821. Всё же стоит заметить, что существуют многочисленные RFC, определяющие расширения SMTP. Поэтому на данный момент полная документация по SMTP и расширениям также занимает несколько больших книг.

Большинство протоколов и спецификаций стека OSI уже не используются, такие как электронная почта X.400. Лишь немногие выжили, часто в значительно упрощённом виде. Структура каталогов X.500 до сих пор используется, в основном, благодаря упрощению первоначального громоздкого протокола DAP, получившему название LDAP и статус стандарта Интернета.

Свёртывание проекта OSI в 1996 году нанесло серьёзный удар по репутации и легитимности участвовавших в нём организаций, особенно ISO. Наиболее крупным упущением создателей OSI был отказ увидеть и признать превосходство стека протоколов TCP/IP.

Обзор сетевого оборудования

Помимо серверов и рабочих станций в локальной сети используется большое количество дополнительного оборудования. В сети на витой паре, объединяющей больше двух компьютеров, будет, по крайней мере, один концентратор (hub), к которому и будут подключены все компьютеры. В более крупных сетях, скорее всего, появятся мосты, коммутаторы, маршрутизаторы.

Концентратор (hub)

Простой повторитель работает на физическом уровне модели OSI. Основной задачей повторителя является восстановление электрических сигналов для передачи их в другие сегменты. За счет усиления и восстановления формы электрических сигналов повторителем, становится возможным расширение сетей, построенных на основе коаксиального кабеля и увеличение общего числа пользователей сети.

Различия в моделях концентраторов при выполнении основной функции (побитное дублирование сигнала на все порты) невелики и, в основном, зависит от типа кабеля (витая пара, оптоволоконный и т.п.). Однако различные модели концентраторы могут реализовывать и дополнительные функции.

Коммутатор (switch)

Коммутаторы, работают на канальном уровне и позволяют разделить общую разделяемую среду на несколько независимых сегментов передачи данных. Алгоритм работы коммутаторов аналогичен алгоритму работы прозрачного моста. Основным отличием, обеспечившим вытеснение мостов коммутаторами – это гораздо более высокая скорость работы коммутаторов. Коммутатор начинает ретрансляцию кадра, не дожидаясь его полного получения (достаточно получить несколько первых байт кадра, содержащих адрес назначения). Кроме того, коммутатор позволяет организовать сразу несколько параллельных соединений между различными парами портов, что повышает пропускную способность сети в несколько раз. Однако коммутатор не может организовать одновременное соединение несколько портов - к одному порту. Технология коммутаторов Ethernet была предложена фирмой Kalpana в 1990 году в ответ на растущие потребности в повышении пропускной способности сетей.

Маршрутизатор (router)

Маршрутизаторы необходимы в крупных сетях, для объединения сегментов, построенных на концентраторах, мостах и коммутаторах. Маршрутизатор может быть реализован в виде отдельного мощного устройства (например, маршрутизаторы компании Cisco Systems), или функцию маршрутизации может выполнять сетевая операционная система обычного компьютера, подключенного одновременно к нескольким сетям, при помощи нескольких сетевых карт (шлюз). Маршрутизаторы работают на сетевом уровне модели OSI и не накладывают ограничений на топологию сети. Если для мостов и коммутаторов обязательно отсутствие петлевых маршрутов в сети (древовидная структура), то маршрутизатор работает в сетях с произвольной топологией и обеспечивает выбор оптимального маршрута для доставки пакетов. Использование древовидной структуры для крупных сетей нерационально, т.к. в таком случае на корневой коммутатор (мост) приходится слишком большая нагрузка, а его отказ приводит к распадению сети на отдельные фрагменты и потере пользователями доступа к большому количеству ресурсов сети. Поэтому рационально строить сети по децентрализованному принципу, когда между любыми двумя компьютерами может существовать множество маршрутов. Именно нахождением и ведением таблицы таких маршрутов (таблицы маршрутизации) и доставкой пакетов по оптимальному маршруту занимается маршрутизатор.

Другой функцией маршрутизаторов является объединение в единую сеть сегментов, работающих на различных протоколах канального уровня. Например, объединение сегментов Fast Ethernet и FDDI. Маршрутизатор работает на сетевом уровне модели OSI (например, по протоколу IP), и для него не существенно какие протоколы канального уровня используются в сегментах.