Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
версия 2 ответы ГОС 1-6.doc
Скачиваний:
2
Добавлен:
21.08.2019
Размер:
947.2 Кб
Скачать

4.2. Закономерности абиотических воздействий

Диаграммы выживания. Каждый живой организм может нормально существовать и продолжать свой род только в определенной области значений какого-либо из существенных факторов среды. Для нормального существования наземных животных и человека существуют и нижние, и верхние пределы температуры, освещенности, концентрации кислорода в воздухе, атмосферного давления и т.п.

Область количественных значений какого-либо фактора среды, в пределах которой могут существовать представители данного вида или популяции организмов, называют диапазоном выживания, зоной толерантности (от лат. tolerantia - терпение, выносливость) или биоинтервалом фактора.

Биоинтервал фактора ограничен крайними, экстремальными для организма или популяции значениями, за пределами которых уже невозможно нормальное осуществление всех жизненных функций.

О положении и границах биоинтервала судят по разным проявлениям жизнедеятельности, которые выступают в качестве функций отклика на действие фактора и оценивают его степень благоприятности. Для отдельного организма это может быть скорость роста и развития, активность, интенсивность обмена веществ; для популяции - в первую очередь выживаемость и реализованная численность.

Если построить график зависимости степени благоприятности от количественных значений фактора, то в пределах биоинтервала график приобретет вид куполообразной кривой. Вершина ее совпадает с точкой или областью биологического оптимума, т.е. наиболее благоприятного для организмов данного вида значения фактора среды. При оптимальных значениях фактора организмы активно питаются, развиваются, растут, размножаются. Такой график можно обозначить как диаграмму выживания (рис. 4.1). Значение биологического оптимума и положение биоинтервала могут быть установлены экспериментально.

Чем больше отклоняется значение фактора от оптимального значения, тем менее благоприятно это для организмов. При приближении к экстремальным значениям фактора возрастает вероятность нарушений отдельных функций и нормальной жизнедеятельности в целом, что приводит к увеличению физиологического напряжения - состоянию стресса. Критическим называют такое значение фактора и соответствующее ему состояние организма, при котором возникающие нарушения обратимы, когда еще сохраняется способность к самовосстановлению после прекращения негативного воздействия.

Нормы реакции и жизненные формы организмов. Положение, ширина диапазона выживания и характер изменения функций отклика в его пределах определяются генетически обусловленной нормой реакции организма на действие данного фактора и обладают видовой специфичностью. Норма реакции, как и характеристики диапазона выживания зависят от возраста, пола, фазы развития и различны для разных форм жизнедеятельности и физиологических процессов. Так, пределы температуры, влажности, концентрации веществ совершенно различны для корней и кроны одного и того же дерева. Процессы фотосинтеза и дыхания в одном листе растения имеют разные температурные оптимумы и т.п.

Рис. 4.1. Диаграмма выживания (по Риклефсу)

Зависимость биологической активности (функции отклика) от градиента фактора среды. Уровни жизнедеятельности, необходимые для сохранения жизни в экстремальных условиях (I), для нормального существования особи (II) и существования популяции (III), определяют соответственно экстремальные значения фактора (от с до с' - биоинтервал фактора), пределы выносливости особи (b и b') и популяции (а и а’)

Сравним диаграммы выживания и биоинтервалы факторов у нескольких пар организмов с различными нормами реакции (рис. 4.2). В первом случае (А) биоинтервалы занимают разные участки диапазона значений фактора: 1 - организмы, приспособленные к низким значениям фактора; 2 - приспособленные к относительно высоким значениям фактора. Это могут быть холодолюбивые и теплолюбивые растения и животные; тенелюбивые и светолюбивые растения; растения, приспособленные к недостатку влаги и требующие высокой влажности; рыбы с разным отношением к солености воды - пресноводные и морские и т.д. Подобные различия для близких в систематическом отношении существ называют жизненными формами организмов. Организмы занимают почти полностью все природные диапазоны абиотических факторов и образуют очень широкий спектр жизненных форм.

Рис. 4.2. Диаграммы выживания для различных жизненных форм организмов

А - гипо- (1) и гиперфакториальные (2) организмы;

Б - стено-(1) и эврибионты (2);

В - толерантные (1) и резистентные (2) организмы

Во втором варианте (рис. 4.2, Б) сравниваются организмы, различающиеся не столько положением биологических оптимумов, сколько шириной биоинтервала: 1 - организмы, обитающие в узком диапазоне значений фактора, - стенобионты (от stenos - узкий); и 2 - организмы, приспособленные к широкому варьированию значений фактора, - эврибионты (от euris - широкий). По отношению к отдельным факторам используют аналогичные термины, начинающиеся с тех же приставок. Так, антарктическая «ледяная» рыба, живущая при температуре не выше 4°, - типичный стенотерм, тогда как карп, населяющий пресные водоемы с температурой от 0 до 35°, - эвритерм. Растение или насекомое может быть стеногидридным или эвригидридным в зависимости от его реакции на колебания влажности. По способности переносить изменения солености морские иглокожие стеногалинны, а проходные рыбы - эвригалинны. Гусеница тутового шелкопряда, питающаяся листьями одного вида растений, - стенофаг, а всеядные животные - бурый медведь, серая крыса, человек - эврифаги и т.д. Конечно, существует множество промежуточных форм между стено- и эврибионтами.

В третьем случае (рис. 4.2, В) следует обратить внимание уже не на ширину биоинтервала, а на форму диаграмм выживания - характер изменений функций отклика при отклонениях от оптимума. Они требуют более детального анализа.

Выносливость, устойчивость, гомеостаз. У одних организмов (рис. 4.2, В-1) при отклонении значений фактора от точки оптимума сразу же изменяется и функция отклика. Они как бы покорно подчиняются ухудшению внешних условий. Так, с понижением температуры среды понижается температура деревьев и обмен веществ в них замедляется. Но при этом все время сохраняется способность восстановить экологическую потенцию при возвращении благоприятных условий. Такие организмы называют обычно выносливыми, или толерантными. К ним относятся растения и низшие животные, пассивно переносящие охлаждение, замерзание, высыхание, голод, дефицит кислорода и т.п. Крайние проявления такой способности, наблюдаемые вблизи границ или даже за пределами биоинтервала, связаны со специальными приспособлениями: с гипобиозом - глубоким замедлением жизнедеятельности, состоянием спячки у животных и анабиозом - полным, но обратимым замиранием всех жизненных процессов, как это имеет место у спор, семян и многих низших животных. Переход в эти состояния чрезвычайно расширяет возможность выживания организмов в самых неблагоприятных условиях.

Но во многих случаях нет полного подчинения функций организма изменениям среды (рис. 4.2, В-2); включаются различные механизмы защиты от неблагоприятных воздействий, сопротивления им или их активного избегания. Реакции защиты и сопротивления обеспечивают большую или меньшую устойчивость, или резистентность (от лат. resistere - сопротивляться) организма по отношению к отклонениям от оптимума в какой-то части биоинтервала. Примерами высокой физиологической устойчивости служит постоянство температуры внутренних частей тела у птиц и млекопитающих при значительных изменениях температуры среды или постоянство солевого состава и осмотического давления крови у животных в среде с совершенно другими свойствами либо при больших колебаниях водно-солевого снабжения организма. Эти примеры иллюстрируют действие принципа гомеостаза на уровне организма. Гомеостаз поддерживается различными механизмами физиологической регуляции и поведения.

Выносливость и устойчивость (толерантность и резистентность) во многих случаях не альтернативны. В том или ином соотношении они встречаются у всех организмов, часто дополняя друг друга. Одно и то же

растение или животное может быть выносливо по отношению к одному фактору и устойчиво по отношению к другому. Но бывает и так, что исчерпавший ресурс устойчивости организм оказывается мало выносливым. Попавшая в ледяную воду теплокровная мышь быстро погибает, тогда как холоднокровный уж легко переносит такое охлаждение, лишь снижая свою подвижность.

При отклонениях факторов среды от оптимальных значений у многих организмов наблюдается опережающее реагирование - избегание неблагоприятных воздействий и активный поиск других более благоприятных условий и местообитаний - гомеостатическое поведение. Организм реагирует не только на величину отклонения, но и на темп нарастания угрозы. Эти реакции очень разнообразны: движения органов растений; целенаправленные перемещения в среде свободных клеток и животных; миграции, перелеты птиц, реакции группирования, создание и использование убежищ; наконец, у человека - технологическое кондиционирование среды. Подобные реакции обусловлены не только абиотическими факторами, на них существенно влияют взаимодействия с другими организмами.

Если поведение оказывается недостаточным для сохранения благоприятной экологической обстановки и гомеостаза, сопротивление негативным воздействиям среды достигается с помощью физиологической регуляции. Так, при повышении температуры и снижении влажности воздуха у растений происходит смыкание устьиц; тем самым уменьшается потеря влаги листьями. Понижение концентрации кислорода в среде вызывает у животных усиление жаберной или легочной вентиляции и ускорение кровообращения. При низкой температуре у птиц и млекопитающих усиливается обмен веществ в мышцах и во внутренних органах, чем достигается увеличение теплообразования и поддержание постоянной температуры тела.

1. Принцип совокупного действия факторов гласит: все факторы среды действуют на организм одновременно и в комплексе. Этот принцип нагляднее всего можно проиллюстрировать примером изменения интенсивности фотосинтеза в течение дня. Из графика

Изменение интенсивности фотосинтеза во времени.

следует, что по мере увеличения силы освещенности (начиная с 4—5 ч утра и до 12 ч дня) интенсивность фотосинтеза возрастает.

Однако одновременно с изменением освещенности повышается и температура, что приводит к усилению ферментативной активности. Так как все реакции фотосинтеза ферментативны, увеличивается и синтез органического вещества. Повышение освещенности вызывает активизацию фотосинтеза в замыкающих клетках устьиц, что приводит к их более широкому открытию и обеспечивает большее поступление в лист углекислого газа — сырья для синтеза органических соединений. Таким образом, как минимум три фактора — освещенность, тепло и снабжение углекислым газом влияют на процесс фотосинтеза одновременно в течение дня и расчленить их влияние невозможно.

Этот принцип можно рассмотреть и на примере роста растений. После деления клеток апекса должно происходить их растяжение, которое осуществляется под действием тургорного давления, создаваемого поступающей в клетки водой. Для построения же оболочки нужны пластические вещества, которые образовываются в процессе фотосинтеза. На степень растяжения оболочки влияют также ростовые вещества — ауксин и гиббереллин, способствующие улучшению пластичности оболочки. Синтез же их зависит от температуры. Таким образом, рост — это результат совместного действия многих факторов: снабжения водой, пластическими веществами, ростовыми гормонами.

Сочетание факторов в разное время суток неодинаково, поэтому и реакция растений на них различна. Увеличение количества тепла, света, элементов минерального питания, влаги стимулирует активность развития, уменьшение названных факторов резко сокращает процессы жизнедеятельности.

2. Закон оптимума. Живые организмы имеют определенный набор потребностей в отношении условий обитания. Для каждого вида существует так называемый экологический преферендум к различным экологическим факторам. Например, термопреферендум - предпочитаемая температура, биотопический преферендум - предпочитаемые биотопы.

Выделяют зону оптимума экологического фактора, или экологический оптимум для организмов данного вида,- наиболее благоприятное воздействие какого-либо фактора (определенный диапазон температуры, влажности, характер биотопа и т. д.).

Также выделяют зону пессимума экологического фактора, или экологический пессимум, - отклонение от оптимума (зона угнетения).

Кривая жизнедеятельности многолетнего растения. Однолетние растения не способны переходить в состояние покоя и зона жизни у них совпадает с зоной жизнедеятельности.

Примечание: 1 — точка оптимума, 2 — точки минимума и максимума, 3 — летальные точки

6. Законы лимитирующих факторов. Среди различных условий обитания выделяются факторы, которые сильнее всего ограничивают успешность жизни организма. В наиболее общем виде эту закономерность формулируют: закон минимума Ю.Либиха (1840), закон лимитирующих (ограничивающих) факторов Ф. Блэкмана (1909), и закон толерантности В. Шелфорда (1913).

Закон минимума был сформулирован еще в 1840 г., задолго до возникновения экологии Ю. Либихом. В простейшем виде этот закон касается успешности роста и величины урожая сельскохозяйственного растения, зависящих от вещества, находящегося в почве в минимуме по сравнению с другими необходимыми веществами. Позже закон минимума был истолкован как действие любого экологического фактора, находящегося в минимуме по сравнению с другими экологическими воздействиями.

Согласно закону лимитирующих факторов Ф. Блэкмана, факторы среды, имеющие в конкретных условиях пессимальное значение, особенно затрудняют возможность существования вида в данных условиях, даже несмотря на оптимальное сочетание других условий. Среди многих факторов, которые могут быть лимитирующими, часто наиболее важными оказываются различные биогенные элементы, вода и температура.

Сходная концепция, развитая В. Шелфордом, известна как закон толерантности. Лимитирующим фактором процветания организма (вида) может быть как минимум, так и максимум экологического воздействия, диапазон между которыми определяет величину толерантности (выносливости) организма к данному фактору. Любой фактор, находящийся в избытке или недостатке, ограничивает рост и развитие организмов и популяций. Так, например, ящерицам, живущим в пустыне, ранним утром слишком холодно, а днем в этой же среде им слишком жарко. Отчасти ящерицы компенсируют указанные особенности местообитания, проводя большую часть времени утром на солнце, а днем, укрываясь в тени.

3. Правило ограничивающего фактора впервые сформулировано в 1840 г. Ю. Либихом: элементы, которые отсутствуют или находятся в небольшом количестве, препятствуют другим элементам достичь полного эффекта. Другими словами, если в почве ощущается недостаток фосфора, то эффект от внесения азота не будет заметен. Вработах В. Шелфорда была установлена справедливость этого положения и для других факторов среды, а не только для элементов минерального питания растений, и эта закономерность была названа"принципом лимитирующего фактора", который гласит: невозможность обитания вида определяется как недостатком, так и избытком любого из ряда факторов. Однако при этом необходимо иметь в виду, что один и тотже организм может иметь широкий диапазон толерантности к одному фактору и узкий к другому. Например, все хвойные (за исключением листопадной лиственницы) имеют широкий температурный диапазон (от -60°С до +40°С), но очень узкий диапазон к загрязнению воздуха.

4. Принцип незаменимости факторов утверждает: действие одного фактора может быть изменено другим, но не заменено. Например, ветер усиливает действие жары, мороза. При комплексном действии факторов может появляться эффект замещения, например, продвижение северной границы леса по речным долинам гораздо значительнее, чем в между речьях на равнинных участках. Объясняется это тем, что комплексные условия речных долин замещают недостаток тепла. Урожайность лугов на Кольском полуострове и под Москвой практически одинаковая. Климатические же условия отличаются значительно: длительность вегетационного сезона под Москвой почти вдвое дольше. Но на севере световой день летом продолжается все 24 часа, поэтому общая продолжительность фотосинтеза почти не изменяется.

Помимо указанных есть и другие закономерности, проявляющиеся независимо от природы и характера действия фактора.

Закон неоднозначного действия фактора на различные функции организма. Согласно этому закону, любой экологический фактор неодинаково влияет на функции организма: оптимум для одних процессов, например, дыхания, не есть оптимум для других, например, пищеварения, и наоборот. Оптимум для одних процессов может являться пессимумом для других. Так, температура воздуха от 40 до 45oС у холоднокровных животных увеличивает скорость обменных процессов, но тормозит двигательную активность, и животные впадают в тепловое оцепенение. Для многих рыб температура воды, оптимальная для созревания половых продуктов, неблагоприятна для икрометания, которое происходит при другом температурном интервале.

4.Биотические факторы среды и общая классификация биотических взаимоотношений. Биотические взаимоотношения – симбиоз. Классификация симбиотических связей по степени развития взаимовыгодного сожительства. Биотические взаимоотношения – антибиоз. Отношения в системе «хищник-жертва». Конкурентные отношения – важнейший механизм формирования видового состава сообщества. Принцип конкурентного исключения Гаузе и парадокс Хатчинсона.

Биотические факторы среды - совокупность влияний жизнедеятельности одних организмов на другие, а также на неживую среду обитания.

По характеру воздействия на организм различают прямые и косвенные биотические факторы.

Живые организмы определенным образом связаны друг с другом. Различают следующие типы связей (взаимоотношений) между видами.

1. Трофические связи возникают, когда один вид питается другим: живыми особями, мертвыми остатками, продуктами жизнедеятельности. Трофическая связь может быть прямой (при питании волков живыми овцами, гиен – трупами зебр) и косвенной (при конкуренции разных видов за один пищевой ресурс).

2. Топические связи проявляются в изменении одним видом условий обитания другого вида. Например, под хвойным лесом, как правило, отсутствует травянистый покров.

3. Форические связи: один вид участвует в распространении другого вида. Перенос животными семян, спор, пыльцы растений называется зоохорией.

4. Фабрические связи: один вид использует для своих сооружений продукты выделения, мертвые остатки или живых особей другого вида.

Наиболее важными являются трофические и топические связи, так как именно они удерживают организмы разных видов друг возле друга, объединяя их в сообщества.

К внутривидовым биотическим факторам относятся демографические, этологические (факторы поведения), внутривидовая конкуренция и др. Межвидовые биотические факторы - более разнообразны и могут быть как отрицательными, так и положительными, а также быть одновременно и положительными, и отрицательными.

Конкуренция (межвидовая): особи или популяции в борьбе за пищу, местообитание и другие необходимые для жизни условия воздействуют друг на друга отрицательно. Конкуренция — это взаимоотношения, возникающие между особями или популяциями одного и того же вида (внутривидовая конкуренция) или разных видов (межвидовая конкуренция), соревнующихся за одни и те же ресурсы среды при их ограниченном количестве. Когда такие популяции обитают совместно, то каждая из них находится в невыгодном положении, поскольку присутствие особей другой популяции уменьшает возможности овладения пищевыми ресурсами, пространством для закрепления на субстрате, убежищами и прочими средствами к существованию (свет, тепло, влага), которыми располагает данное местообитание. Это единственная форма биотических отношений, оказывающая негативное влияние на взаимодействующих партнеров.

Формы конкурентных взаимоотношений могут быть самыми различными: от прямой физической борьбы до мирного совместного существования. Однако если два вида с одинаковыми экологическими потребностями оказываются в одном сообществе, то рано или поздно один более сильный конкурент вытеснит другого. Это одно из наиболее общих экологических правил, получившее название закона конкурентного исключения и сформулированное российским ученым Г. Ф. Гаузе(1934).

О наличии конкуренции, которая наиболее отчетливо проявляется на популяционном уровне, судят по возрастанию смертности особей, снижению скорости их роста и плодовитости, возникновению стрессовых ситуаций, драк и т. п. Победителем в конкурентной борьбе в конечном итоге оказывается тот вид, который в конкретной экологической обстановке имеет преимущества по сравнению с другими, т. е. лучше приспособлен к условиям окружающей среды. В результате конкурентного исключения в сообществе живых организмов уживаются вместе только те виды, которые в ходе эволюции приобрели различия в потребляемых ресурсах.

ПРИНЦИП КОНКУРЕНТНОГО ИСКЛЮЧЕНИЯ

Открытая Г. Ф. Гаузе (1934) закономерность, согласно которой два вида со сходными экологическими требованиями не могут длительное время занимать одну и ту же экологическую нишу; экологическое разобщение, наблюдаемое при конкуренции тесно связанных или сходных в иных отношениях видов в отсутствие хищничества. Не имеет абсолютного характера.

Д. Хатчинсон (1961) показал, что принцип конкурентного исключения (Правило Гаузе) не действует, когда время заметных сезонных изменений среды меньше или равно тому, которое требуется для вытеснения одного вида другим. Следовательно, чем короче жизненный цикл особей данного вида, тем меньше применимо к нему правило Гаузе. Конкретно - ПЛАНКТОННЫЙ ПАРАДОКС

отсутствие конкурентного исключения доминирующих видов в фитопланктоне, воспроизводство которого происходит за несколько дней или даже часов; несовпадение мест питания, исключающее конкуренцию. По Дж. Хатчинсону (1961), каждая водоросль — центр истощения биогенных элементов, уменьшающегося к периферии. На этой основе автор показал, что чем короче жизненный цикл особей доминирующего вида, тем меньше приложим к нему принцип конкурентного исключения.

ПРИНЦИП СОСУЩЕСТВОВАНИЯ (ПАРАДОКС ХАТЧИНСОНА): два вида в порядке исключения могут сосуществовать в одной экологической нише, и они способны эволюционировать в близком направлении. Это относится в основном к пресноводным и морским организмам. Вспомните разнообразие озерных или морских рыб. Могут встречаться близкие виды рыб в одной и той же экологической нише. Пустующая экологическая ниша всегда заполняется естественным путем.

Конкурентные отношения являются важнейшим механизмом формирования видового состава сообщества, пространственного распределения видов и регуляции их численности. Именно поэтому они играют огромную роль в эволюционном развитии видов.

Классификация межвидовых биотических взаимодействий.

Нейтрализм - тип взаимодействия между популяциями двух видов, которые не взаимодействуют друг с другом и ни одна из них не влияет на другую. Редко встречается в природе, так как в любом биоценозе всегда имеются косвенные взаимодействия.

При конкуренции оба вида влияют друг на друга отрицательно. Если два вида животных обладают близкими экологическими потребностями, то между ними развивается конкуренция - прямая вражда.

Хищничество - способ добывания пищи и питания животных (иногда и растений), называемых хищниками, при котором они ловят, умерщвляют и поедают других животных - жертв. Хищники первого порядка нападают на травоядных животных, второго - на более слабых хищников. Способность "переключаться" с одного вида добычи на другой является одним из необходимых экологических приспособлений хищников. Второе приспособление - наличие специальных приспособлений для выслеживания и ловли своих жертв. Например, у хищников хорошо развита нервная система, органы чувств, также есть специальные приспособления, помогающие овладеть, умертвить, съесть и переварить добычу. У жертв также есть защитные приспособления, например, шипы, колючки, панцири, защитная окраска, ядовитые железы, способность быстро прятаться и т.д. Благодаря специальным приспособлениям у хищников и жертв в природе создаются определенные группировки организмов - специализированные хищники и жертвы.

Система «хищник-жертва» — сложная экосистема, для которой реализованы долговременные отношения между видами хищника и жертвы, типичный пример коэволюции.

Отношения между хищниками и их жертвами развиваются циклически, являясь иллюстрацией нейтрального равновесия.

Приспособления, вырабатываемые жертвами для противодействия хищникам, способствуют выработке у хищников механизмов преодоления этих приспособлений. Длительное совместное существование хищников и жертв приводит к формированию системы взаимодействия, при которой обе группы устойчиво сохраняются на изучаемой территории. Нарушение такой системы часто приводит к отрицательным экологическим последствиям.

Негативное влияние нарушения коэволюционных связей наблюдается при интродукции видов. В частности, козы и кролики, интродуцированные в Австралии, не имеют на этом материке эффективных механизмов регуляции численности, что приводит к разрушению природных экосистем.

Математическая модель модель Лотки — Вольтерра

Допустим, что на некоторой территории обитают два вида животных: кролики (питающиеся растениями) и лисы (питающиеся кроликами). Пусть число кроликов , число лис . Используя Модель Мальтуса с необходимыми поправками, учитывающими поедание кроликов лисами, приходим к следующей системе, носящей имя модели Вольтерра — Лотки:

Эта система имеет равновесное состояние, когда число кроликов и лис постоянно. Отклонение от этого состояния приводит к колебаниям численности кроликов и лис, аналогичным колебаниям гармонического осциллятора. Как и в случае гармонического осциллятора, это поведение не является структурно устойчивым: малое изменение модели (например, учитывающее ограниченность ресурсов, необходимых кроликам) может привести к качественному изменению поведения. Например, равновесное состояние может стать устойчивым, и колебания численности будут затухать. Возможна и противоположная ситуация, когда любое малое отклонение от положения равновесия приведет к катастрофическим последствиям, вплоть до полного вымирания одного из видов. На вопрос о том, какой из этих сценариев реализуется, модель Вольтерра — Лотки ответа не дает: здесь требуются дополнительные исследования.

С точки зрения теории колебаний модель Вольтерра — Лотки является консервативной системой, обладающей первым интегралом движения. Эта система не является грубой, поскольку малейшие изменения правой части уравнений приводят к качественным ее изменениям динамического поведения. Однако, возможно "слегка" модифицировать правую часть уравнений таким образом, что система станет автоколебательной. Наличие устойчивого предельного цикла, свойственного грубым динамическим системам, способствует значительному расширению области применимости модели .

Групповой образ жизни хищников и их жертв радикально меняет поведение модели, придает ей повышенную устойчивость.

Обоснование: при групповом образе жизни снижается частота случайных встреч хищников с потенциальными жертвами, что подтверждается наблюдениями за динамикой численности львов и антилоп гну в парке Серенгети

Симбиоз - различные формы совместного существования организмов, разных видов, составляющих симбионтную систему, в которой один из партнеров или оба возлагает на другого регуляцию своих отношений с внешней средой. Основу для возникновения симбиоза составляют следующие взаимоотношения:

Трофические - питание одного партнера осуществляется за счет другого путем использования остатков его пищи

Пространственные - поселение на поверхности или внутри тела партнера, совместное использование норок.

Симбионты часто характеризуются противоположными признаками, например, подвижные и малоподвижные; обладающие средствами защиты и лишенные их. Благодаря симбиозу один из партнеров или оба получают дополнительные возможности в борьбе за существование. При факультативном симбиозе каждый из партнеров при его отсутствии может жить самостоятельно, а при облигатном партнеры настолько зависят друг от друга, что не могут существовать самостоятельно. В зависимости от характера отношений между партнерами различают: комменсализм, паразитизм, мутуализм.

Комменсализм - форма взаимоотношений двух видов, при которой вид 1-комменсал извлекает выгоду, используя особенности строения или образа жизни хозяина, для другого эти отношения безразличны. При сотрапезничестве комменсальные отношения возникают на базе пищевых связей. Квартиранство (синойкия) - пространственное сожительство, полезное для одного и безразличное для другого. Поверхностное размещение мелких животных на крупных - эпиойкия, а размещение мелких организмов внутри крупных - эндойкия. При форезии мелкие слабоподвижные животные (комменсалы) используют крупных животных для расселения, прикрепляясь к их телу.

Мутуализм - форма симбиоза, при которой каждый из сожителей получает относительно равную форму и ни один из них не может существовать без другого. Эти взаимоотношения благоприятны для роста и выживания обоих организмов. Например, клубеньковые бактерии и бобовые растения.

Паразитизм - форма взаимоотношений организмов разных видов, при которой один их них (паразит) использует другого в качестве источника пищи и среды обитания, возлагая на него регуляцию своих взаимоотношений с внешней средой.

По характеру связей со своим местообитанием различают несколько видов паразитов:

эктопаразиты - питаются телом хозяина, находясь на его поверхности. Например, блохи, клещи, вши; мучнистая роса, роффиезия

эндопаразиты - внутренние паразиты, живущие внутри тела хозяина и питающиеся его соками и тканями. Например, клещи, пиявки, веслоногие ракообразные в жабрах рыб, глисты

По степени зависимости от хозяина:

факультативные паразиты - способны жить и размножаться самостоятельно, независимо от хозяина, но ведущие паразитический образ жизни в случае снижения жизнестойкости

облигатные паразиты - абсолютно неспособные жить и размножаться вне своего хозяина (полные паразиты)

Аменсализм - совокупность взаимоотношений между популяциями двух видов, одна из которых претерпевает угнетение роста и размножения со стороны другой, а другая не испытывает отрицательного воздействия. Аллелопатия - невозможность существования того или иного вида в результате интоксикации среды ("царская корона").

Протокооперация - сообщество популяций двух видов, которое не является обязательным, но приносит пользу обоим видам.

  1. Основные среды жизни и адаптации организмов к ним. Водная среда обитания – главные свойства. Экологические зоны Мирового океана. Экологические группы гидробионтов. Почва как среда обитания. Структура почвы. Температурный и водный режим. Структура населения почвы и важнейшие адаптации педобионтов. Наземно-воздушная среда обитания. Многообразие действующих абиотических факторов. Климаты Земли (концепция Холдриджа) и биомы суши. Живые организмы как среда обитания. Эндосимбиоз и паразитизм.

На нашей планете живые организмы освоили четыре основные среды обитания, сильно различающиеся по специфике условий. Водная среда была первой, в которой возникла и распространилась жизнь. В последующем живые организмы овладели наземно-воздушной средой, создали и заселили почву. Четвертой специфической средой жизни стали сами живые организмы, каждый из которых представляет собой целый мир для населяющих его паразитов или симбионтов.

Водная среда обитания - гидросфера

Вода покрывает 71% площади земного шара и составляет1/800 часть объема суши или 1370 м3. Основная масса воды сосредоточена в морях и океанах – 94-98%, в полярных льдах содержится около 1,2% воды и совсем малая доля – менее 0,5%, в пресных водах рек, озер и болот. Соотношения эти постоянны, хотя в природе, не переставая, идет круго-ворот воды .

В водной среде обитает около 150 000 видов животных и 10 000 растений, что составляет соответственно всего 7 и 8 % от общего числа видов Земли. На основании этого был сделан вывод о том, что на суше эволюция шла намного интенсивнее, чем в воде.

В морях-океанах, как в горах, выражена вертикальная зональность. Особенно сильно различаются по экологии пелагиаль – вся толща воды, и бенталь – дно.

Толща воды – пелагиаль, по вертикали делится на несколько зон: эпипелигеаль, батипелигеаль, абиссопелигиаль и ультраабиссопелигиаль (рис. 2).

В зависимости от крутизны спуска и глубины на дне тоже выделяют несколько зон, которым соответствуют указанные зоны пелагиали:

- литоральная – кромка берега, заливаемая во время приливов.

- супралиторальная – часть берега выше верхней приливной черты, куда долетают брызги прибоя.

- сублиторальная – плавное понижение суши до 200м.

- батиальная – крутое понижение суши (материковый склон),

- абиссальная – плавное понижение дна океанского ложа; глубина обеих зон вместе достигает 3-6 км.

- ультраабиссальная – глубоководные впадины от 6 до 10 км.

Экологические группы гидробионтов. Наибольшим разнообразием жизни отличаются теплые моря и океаны (40000 видов животных) в области экватора и тропиках, к северу и югу происходит обеднение флоры и фауны морей в сотни раз. Что касается распределения организмов непосредственно в море, то основная масса их сосредоточена в поверхностных слоях (эпипелагиаль) и в сублиторальной зоне. В зависимости от способа передвижения и пребывания в определенных слоях, морские обитатели подразделяются на три экологические группы: нектон, планктон и бентос.

Нектон (nektos – плавающий) - активно передвигающиеся крупные животные, способные преодолевать большие расстояния и сильные течения: рыбы, кальмары, ластоногие, киты. В пресных водоемах к нектону относятся и земноводные и множество насекомых.

Планктон (planktos – блуждающий, парящий) – совокупность растений (фитопланктон: диатомовые, зеленые и сине-зеленые (только пресные водоемы) водоросли, растительные жгутиконосцы, перидинеи и др.) и мелких животных организмов (зоопланктон: мелкие ракообразные, из более крупных – крылоногие моллюски, медузы, гребневики, некоторые черви), обитающих на разной глубине, но не способных к активным передвижениям и к противостоянию течениям. В состав планктона входят и личинки животных, образуя особую группу – нейстон. Это пассивно плавающее «временное» население самого верхнего слоя воды, представленное разными животными (десятиногие, усоногие и веслоногие ракообразные, иглокожие, полихеты, рыбы, моллюски и др.) в личиночной стадии. Личинки, взрослея, переходят в нижние слои пелагели. Выше нейстона располагается плейстон – это организмы, у которых верхняя часть тела растет над водой, а нижняя – в воде (ряска – Lemma, сифонофоры и др.). Планктон играет важную роль в трофических связях биосферы, т.к. является пищей для многих водных обитателей, в том числе основным кормом для усатых китов (Myatcoceti).

Бентос (benthos – глубина) – гидробионты дна. Представлен в основном прикрепленными или медленно передвигающимися животными (зообентос: фораминефоры, рыбы, губки, кишечнополостные, черви, плеченогие моллюски, асцидии, и др.), более многочисленными на мелководье. На мелководье в бентос входят и растения (фитобентос: диатомовые, зеленые, бурые, красные водоросли, бактерии). На глубине, где нет света, фитобентос отсутствует. У побережий встречаются цветковые растения зостера, рупия. Наиболее богаты фитобентосом каменистые участки дна.

В озерах зообентос менее обилен и разнообразен, чем в море. Его образуют простейшие (инфузории, дафнии), пиявки, моллюски, личинки насекомых и др. Фитобентос озер образован свободно плавающими диатомеями, зелеными и сине-зелеными водорослями; бурые и красные водоросли отсутствуют.

Укореняющиеся прибрежные растения в озерах образуют четко выраженные пояса, видовой состав и облик которых согласуются с условиями среды в пограничной зоне «суша-вода». В воде у самого берега растут гидрофиты – полупогруженные в воду растения (стрелолист, белокрыльник, камыши, рогоз, осоки, трищетинник, тростник). Они сменяются гидатофитами – растениями, погруженными в воду, но с плавающими листьями (лотос, ряски, кубышки, чилим, такла) и – далее – полностью погруженными (рдесты, элодея, хара). К гидатофитам относятся и плавающие на поверхности растения (ряска).

Высокая плотность водной среды определяет особый состав и характер изменения жизнеобеспечивающих факторов. Одни из них те же, что и на суше – тепло, свет, другие специфические: давление воды (с глубиной увеличивается на 1 атм. на каждые 10 м), содержание кислорода, состав солей, кислотность. Благодаря высокой плотности среды, значения тепла и света с градиентом высоты изменяются гораздо быстрее, чем на суше.

Тепловой режим. Для водной среды характерен меньший приход тепла, т.к. значительная часть его отражается, и не менее значительная часть расходуется на испарение. Согласуясь с динамикой наземных температур, температура воды обладает меньшими колебаниями суточных и сезонных температур. Более того, водоемы существенно выравнивают ход температур в атмосфере прибрежных районов. При отсутствии ледового панциря моря в холодное время года оказывают отепляющее действие на прилегающие территории суши, летом – охлаждающее и увлажняющее.

Диапазон значений температуры воды в Мировом океане составляет 38° (от -2 до +36°С), в пресных водоемах – 26° (от -0,9 до +25°С). С глубиной температура воды резко падает. До 50 м наблюдаются суточные колебания температуры, до 400 – сезонные, глубже она становится постоянной, опускаясь до +1-3°С (в Заполярье близка к 0°С). Поскольку температурный режим в водоемах сравнительно стабилен, их обитателям свойственна стенотермность. Незначительные колебания температуры в ту или иную сторону сопровождается существенными изменениями в водных экосистемах.

Примеры: «биологический взрыв» в дельте Волги из-за понижения уровня Каспийского моря – разрастание зарослей лотоса (Nelumba kaspium), в южном Приморье – зарастание белокрыльником стариц рек (Комаровка, Илистая и др.) по берегам которых вырублена и сожжена древесная растительность.

В связи с разной степенью прогревания верхних и нижних слоев в течение года, приливами и отливами, течениями, штормами происходит постоянное перемешивание водных слоев. Роль перемешивания воды для водных обитателей (гидробионтов) исключительно велика, т.к. при этом выравнивается распределение кислорода и питательных веществ внутри водоемов, обеспечивая обменные процессы между организмами и средой.

В стоячих водоемах (озерах) умеренных широт весной и осенью имеет место вертикальное перемешивание, и в эти сезоны температура во всем водоеме становится однородной, т.е. наступает гомотермия. Летом и зимой в результате резкого усиления прогревания или охлаждения верхних слоев перемешивание воды прекращается. Это явление называется температурной дихотомией, а период временного застоя – стагнацией (летней или зимней). Летом более легкие теплые слои остаются на поверхности, располагаясь над тяжелыми холодными (рис. 3). Зимой, наоборот, в придонном слое более теплая вода, так как непосредственно подо льдом температура поверхностных вод меньше +4°С и они в силу физико-химических свойств воды становятся более легкими, чем вода с температурой выше +4°С.

В периоды стагнаций четко выделяются три слоя: верхний (эпилимнион) с наиболее резкими сезонными колебаниями температуры воды, средний (металимнион или термоклин), в котором происходит резкий скачок температур, и придонный (гиполимнион), в котором температура в течение года изменяется слабо. В периоды стагнаций в толще воды образуется дефицит кислорода – летом в придонной части, а зимой и в верхней, вследствие чего в зимний период нередко происходят заморы рыбы.

Световой режим. Интенсивность света в воде сильно ослаблена из-за его отражения поверхностью и поглощения самой водой. Это сильно сказывается на развитии фотосинтезирующих растений. Чем меньше прозрачность воды, тем сильнее поглощается свет. Прозрачность воды лимитируется минеральными взвесями, планктоном. Уменьшается она при бурном развитии мелких организмов летом, а в умеренных и северных широтах – еще и зимой, после установления ледового покрова и укрытия его сверху снегом.

В океанах, где вода очень прозрачна, на глубину 140 м проникает 1% световой радиации, а в небольших озерах на глубине 2 м проникает всего лишь десятые доли процента. Лучи разных частей спектра поглощаются в воде неодинаково, вначале поглощаются красные лучи. С глубиной становится все темнее, и цвет воды становится вначале зеленым, затем голубым, синим и в конце – сине-фиолетовым, переходя в полный мрак. Соответственно меняют цвет и гидробионты, адаптирующиеся не только к составу света, но и к его недостатку – хроматическая адаптация. В светлых зонах, на мелководьях, преобладают зеленые водоросли (Chlorophyta), хлорофилл которых поглощают красные лучи, c глубиной они сменяются бурыми (Phaephyta) и далее красными (Rhodophyta). На больших глубинах фитобентос отсутствует.

К недостатку света растения приспособились развитием хроматофоров крупных размеров, обеспечивающих низкую точку компенсации фотосинтеза, а также увеличением площади ассимилирующих органов (индекса листовой поверхности). Для глубоководных водорослей типичны сильно рассеченные листья, пластинки листьев тонкие, просвечивающиеся. Для полупогруженных и плавающих растений характерна гетерофиллия – листья над водой такие же, как у наземных растений, имеют цельную пластинку, развит устьичный аппарат, а в воде листья очень тонкие, состоят из узких нитевидных долей.

Гетерофиллия: кубышки, кувшинки, стрелолист, чилим (водяной орех).

Животные, как и растения, закономерно меняют свою окраску с глубиной. В верхних слоях они ярко окрашены в разные цвета, в сумеречной зоне (морской окунь, кораллы, ракообразные) окрашены в цвета с красным оттенком – удобнее скрываться от врагов. Глубоководные виды лишены пигментов.

Характерными свойствами водной среды, отличными от суши, являются высокая плотность, подвижность, кислотность, способность растворения газов и солей. Для всех этих условий у гидробионтов исторически выработаны соответствующие приспособления-адаптации.

Каковы приспособления гидробионтов к высокой плотности воды?

Воде свойственна высокая плотность (1 г/см3, что в 800 раз больше плотности воздуха) и вязкость.

1) У растений очень слабо развиты или вовсе отсутствуют механические ткани – им опора сама вода. Большинству свойственна плавучесть, за счет воздухоносных межклеточных полостей. Характерно активное вегетативное размножение, развитие гидрохории – вынос цветоносов над водой и распространение пыльцы, семян и спор поверхностными течениями.

2) У живущих в толще воды и активно плавающих животных тело имеет обтекаемую форму и смазано слизью, уменьшающей трение при передвижении. Развиты приспособления для повышения плавучести: скопления жира в тканях, плавательные пузыри у рыб, воздухоносные полости у сифонофор. У пассивно плавающих животных увеличивается удельная поверхность тела за счет выростов, шипов, придатков; тело уплощается, происходит редукция скелетных органов. Разные способы передвижения: изгибание тела, с помощью жгутиков, ресничек, реактивный способ передвижения (головомоллюски).

У придонных животных исчезает или слабо развит скелет, увеличиваются размеры тела, обычна редукция зрения, развитие осязательных органов.

Каковы приспособления гидробионтов к подвижности воды?

Характерная черта водной среды – подвижность. Она обусловлена приливами и отливами, морскими течениями, штормами, разными уровнями высотных отметок русел рек.

1) В проточных водоемах растения прочно прикрепляются к неподвижным подводным предметам. Донная поверхность для них в первую очередь – субстрат. Это зеленые (Cladophora) и диатомовые (Diatomeae) водоросли, водяные мхи. Мхи даже образуют плотный покров на быстрых перекатах рек. В прибойно-отливной полосе морей и многие животные имеют приспособления для прикрепления ко дну (брюхоногие моллюски, усоногие раки), или же прячутся в расщелинах.

2) У рыб проточных вод тело в поперечнике круглое, а у рыб, обитающих у дна, как и у придонных беспозвоночных животных, тело плоское. У многих на брюшной стороне есть органы фиксации к подводным предметам.

Каковы приспособления гидробионтов к солености воды?

Природным водоемам свойствен определенный химический состав. Преобладают карбонаты, сульфаты, хлориды. В пресных водоемах концентрация солей не более 0,5 г/, в морях – от 12 до 35 г/л (промилле – десятые доли процента). При солености более 40 промилле водоем называют гипергалинным или пересоленным.

1) В пресной воде (гипотоническая среда) хорошо выражены процессы осморегуляции. Гидробионты вынуждены постоянно удалять проникающую в них воду, они гомойосмотичны (инфузории каждые 2-3 минуты «прокачивают» через себя количество воды, равное ее весу). В соленой воде (изотоническая среда) концентрация солей в телах и тканях гидробионтов одинакова (изотонична) с концентрацией солей, растворенных в воде – они пойкилоосмотичны. Поэтому у обитателей соленых водоемов осморегуляторные функции не развиты, и они не смогли заселить пресные водоемы.

2) Водные растения способны поглощать воду и питательные вещества из воды – «бульона», всей поверхностью, поэтому у них сильно расчленены листья и слабо развиты проводящие ткани и корни. Корни служат в основном для прикрепления к подводному субстрату. У большинства растений пресных водоемов есть корни.

Типично морские и типично пресноводные виды – стеногалинные, не переносят значительных изменений в солености воды. Эвригалинных видов немного. Они обычны в солоноватых водах (пресноводный судак, щука, лещ, кефаль, приморские лососи).

Каково отношение гидробионтов к составу газов в воде?

В воде кислород важнейший экологический фактор. Источник его – атмосфера и фотосинтезирующие растения. При перемешивании воды, особенно в проточных водоемах и при уменьшении температуры содержание кислорода возрастает. Некоторые рыбы очень чувствительны к дефициту кислорода (форель, гольян, хариус) и потому предпочитают холодные горные реки и ручьи. Другие рыбы (карась, сазан, плотва) неприхотливы к содержанию кислорода и могут жить на дне глубоких водоемов. Многие водяные насекомые, личинки комаров, легочные моллюски тоже толерантны к содержанию кислорода в воде, потому-что они время от времени поднимаются к поверхности и заглатывают свежий воздух.

Углекислого газа в воде достаточно – почти в 700 раз больше, чем в воздухе. Он используется в фотосинтезе растений и идет на формирование известковых скелетных образований животных (раковины моллюсков, покровы ракообразных, каркасы радиолярий и др.).

Каково отношение гидробионтов к кислотности?

В пресноводных водоемах кислотность воды, или концентрация водородных ионов, варьирует гораздо сильнее, чем в морских – от pH=3,7-4,7 (кислые) до pH=7,8 (щелочные). Кислотностью воды определяется во многом видовой состав растений гидробионтов. В кислых водах болот растут сфагновые мхи и живут в обилии раковинные корненожки, но нет моллюсков-беззубок (Unio), редко встречаются другие моллюски. В щелочной среде развиваются многие виды рдестов, элодея. Большинство пресноводных рыб живут в диапазоне pH от 5 до 9 и массово гибнут за пределами этих значений.

Кислотность морской воды убывает с глубиной.

Об экологической пластичности гидробионтов. Пресноводные растения и животные экологически более пластичны (эвритермны, эвригаленны), чем морские, обитатели прибрежных зон более пластичны (эвритермны), чем глубоководные. Есть виды, обладающие узкой экологической пластичностью по отношению к одному фактору (лотос – стенотермный вид, рачок артемия (Artimia solina) – стеногаленный) и широкой – по отношению к другим. Более пластичны организмы в отношении тех факторов, которые более изменчивы. И именно они распространены более широко (элодея, корненожки Cyphoderia ampulla). Зависит пластичность и от возраста и фазы развития.

Наземно-воздушная среда обитания

В ходе эволюции эта среда была освоена позже, чем водная. Ее особенность заключается в том, что она газообразная, поэтому характеризуется низкими влажностью, плотностью и давлением, высоким содержанием кислорода. В ходе эволюции у живых организмов выработались необходимые анатомо-морфологические, физиологические, поведенческие и другие адаптации.

Животные в наземно-воздушной среде передвигаются по почве или по воздуху (птицы, насекомые), а растения укореняются в почве. В связи с этим, у животных появились легкие и трахеи, а у растений – устьичный аппарат, т.е. органы, которыми сухопутные обитатели планеты усваивают кислород прямо из воздуха. Сильное развитие получили скелетные органы, обеспечивающие автономность передвижения по суше и поддерживающие тела со всеми его органами в условиях незначительной плотности среды, в тысячи раз меньшей по сравнению с водой. Экологические факторы в наземно-воздушной среде отличаются от других сред обитания высокой интенсивностью света, значительными колебаниями температуры и влажности воздуха, корреляцией всех факторов с географическим положением, сменой сезонов года и времени суток. Воздействия их на организмы неразрывно связано с движением воздуха и положения относительно морей и океанов и сильно отличаются от воздействия в водной

У животных и растений суши выработались свои, не менее оригинальные адаптации на неблагоприятные факторы среды: сложное строение тела и его покровов, периодичность и ритмика жизненных циклов, механизмы терморегуляции и пр. Выработалась целенаправленная подвижность животных в поисках пищи, появились переносимые ветром споры, семена и пыльца растений, а также растения и животные, жизнь которых всецело связана с воздушной средой. Сформировалась исключительно тесная функциональная, ресурсная и механическая взаимосвязь с почвой.

Климатические факторы. Вызываемые потоком солнечной энергии теплофизические процессы в атмосфере реализуются в виде различных проявлений климата. Климатом обусловлены главные географические особенности экологической энергетики. Зональные различия в распределении солнечной энергии (табл. 4.2) определяются не только географической широтой, но и прозрачностью атмосферы, облачностью, отражающими свойствами земной поверхности, характером растительного покрова.

В эколого-климатчческую характеристику местности входят: среднегодовые величины и сезонные (помесячные) колебания температуры, ее суточный ход, абсолютные минимумы и максимумы; сроки перехода температуры через 0°; количество осадков, испаряемость влаги; сила и направление ветров; влажность воздуха; число дней солнечного сияния, суммарная солнечная радиация, радиационный баланс и др.

Таблица 4.2