Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Тезисы лекций Оптика.doc
Скачиваний:
30
Добавлен:
16.08.2019
Размер:
910.34 Кб
Скачать

12. Зонная теория твердого тела

1. Образование энергетических зон в кристалле.

В свободных атомах электроны имеют совершенно одинаковый дискретный набор дозволенных уровней энергии. Но при объединении N ≈ 1023 атомов в кристалл электроны взаимодействуют не с одним, а со всеми атомами кристалла. В результате некоторый уровень энергии свободного атома в кристалле «расщепляется» на N уровней с ничтожно малой (10 –23 эВ) разностью энергий. Эти N уровней энергии образуют энергетическую зону. Каждый уровень энергии в зоне, согласно принципу Паули, могут занимать не более двух электронов.

Д ля объяснения электрических, тепловых, оптических свойств достаточно рассматривать две высшие зоны: валентную зону, образованную расщеплением основного уровня энергии валентных электронов, и зону проводимости, образованную расщеплением уровня энергии возбужденных электронов.

2 . Деление твердых тел на проводники, полупроводники и

изоляторы

а). Проводники. Кристалл является проводником, если в валентной зоне есть свободные уровни энергии или она перекрывается с зоной проводимости. Под действием электрического поля электроны и дырки имеют право перемещаться в кристалле с увеличением скорости, занимая все более высокие уровни энергии.

К лассическая электронная теория электропроводности предполагает, что в проводниках есть свободные электроны, которые ведут себя подобно идеальному газу. Количество свободных электронов примерно равно числу атомов. При включении электрического поля на тепловое движение накладывается дрейф – направленное движение под действием сил поля. Из-за рассеяния электронов на ионах в узлах кристаллической решетки происходит потеря кинетической энергии электронов с превращением в теплоту и возникает электрическое сопротивление. Электронная теория Друде−Лоренца подтверждает экспериментальные законы постоянного тока – закон Ома, закон Джоуля – Ленца. Но удельная проводимость σ оказывается на один-два порядка больше экспериментальных значений.

О бъяснение дано в квантовой механике в зонной теории твердых тел. При температуре абсолютного нуля электроны заполняют попарно энергетические уровни, поднимаясь по уровням все выше. Наивысший занятый уровень энергии называется уровнем Ферми. Энергия Ферми ЕФ имеет значение 5–8 эВ. Это большая энергия, она соответствует энергии теплового движения при температуре более 10 000 К. Поэтому при нагреве (кТ<<ЕФ) распределение электронов по энергиям изменяется для малой доли, менее процента, вблизи уровня Ферми (рис. 1). Если валентная зона заполнена не полностью, либо перекрывается с зоной проводимости, то в этом случае электроны верхних уровней под действием электрического поля имеют право увеличивать кинетическую энергию, переходя на свободные уровни, перемещаться по кристаллу и переносить ток. Электроны из нижних уровней в электропроводности не участвуют. То есть в отличие от классической теории только малая часть валентных электронов переносит электрический ток.

б) Полупроводники. Полупроводники – это кристаллические тела, которые по электропроводности занимают промежуточное положение между металлическими проводниками и изоляторами. Но принципиальным отличием полупроводников от металлов является быстрое уменьшения сопротивления с ростом температуры, в то время как у металлов оно медленно растет. Также электропроводность полупроводников сильно зависит от примесей.

Полупроводники – это, как правило, кристаллы элементов 4-й группы таблицы Менделеева, например германия, кремния. При образовании кристалла между атомами возникает химическая связь четырех валентных электронов. При абсолютном нуле температуры все электроны связаны, и кристалл является изолятором. Но при комнатных температурах некоторые электроны, получив достаточную энергию теплового движения, могут оторваться от атома, стать свободными. Одновременно образуется вакантная, незаполненная связь, которую может занять какой-либо электрон из соседних атомов, оставив после себя вакантную связь, которую может занять следующий электрон. Прыжки большого числа электронов эквивалентны перемещению вакантной связи, обладающей положительным электрическим зарядом, так называемой «дырки». В электрическом поле электроны и дырки перемещаются в противоположных направлениях, создавая электрический ток. С ростом температуры число свободных электронов и дырок растет, что приводит к уменьшению сопротивления.

К ристалл является полупроводником, если валентная зона заполнена полностью, а зона проводимости отделена так называемой запрещенной зоной, ширина которой не более 2 электрон-вольт.

в. Изоляторы. Кристалл является изолятором, если валентная зона заполнена полностью, а зона проводимости отделена запрещенной зоной, ширина которой (условно) более 2 электрон-вольт. В этом случае энергии теплового движения электрона недостаточно для перехода электрона в зону проводимости. Свободных носителей заряда в изоляторах нет, зона проводимости пуста, электрическое сопротивление бесконечно.

4. Собственная проводимость полупроводников

При нуле абсолютной температуры ни тепловое движение, ни электрическое поле не в состоянии сообщить добавочную энергию электрону для перехода в зону проводимости и кристалл является изолятором. Но при комнатной температуре энергия теплового движения уже достаточна для ионизации атомов. Освободившиеся электроны переходят в зону проводимости и получают право перемещаться по кристаллу. Концентрация свободных электронов в зоне проводимости определяется распределением Больцмана

. (1)

Здесь n0 – концентрация всех валентных электронов, Ε – ширина запрещенной зоны или энергия активации, кТ – мера энергии теплового движения электрона, равная произведению постоянной Больцмана на абсолютную температуру. Сопротивление кристалла обратно пропорционально концентрации электронов в зоне проводимости и дырок в валентной зоне, поэтому

. (2)

Здесь R0 – сопротивление полупроводника, если бы все валентные электроны стали свободными. Коэффициент «2» учитывает энергию активации, приходящуюся на два возникающих вместе заряда – на электрон и дырку. В чистом полупроводнике число свободных электронов равно числу дырок, они являются носителями заряда.

5. Примесная проводимость полупроводников

В лияние примесей в полупроводниках на электропроводность также объясняет зонная теория. Если, например, в кристалл 4-валентного полупроводника внести атом 5-валентной примеси, например фосфора, то один электрон окажется слабо связан с ядром атома. Его энергия будет чуть меньше, чем у свободных электронов и его энергетический уровень будет расположен близко ко дну зоны проводимости (рис. 2). Этот уровень энергии называется донорным. Энергия активации Едон для перехода электрона с донорного уровня в зону проводимости сравнительно мала. В кристалле, в зоне проводимости появляются электроны, они являются основными носителями электрического заряда. Это полупроводники n-типа.

Если в кристалл 4-валентного полупроводника внести атомы 3-валентной примеси, например индия, бора, то одна связь окажется незаполненной. Образуется дырка. Энергия электрона, занявшего дырку, немного больше, чем у других валентных электронов. Этот уровень энергии, называемый акцепторным, чуть выше потолка валентной зоны. Получив добавочную энергию Еакц,, на акцепторный уровень переходят электроны из валентной зоны, а в валентной зоне остается дырка. Дырки являются основными носителями заряда. Такие кристаллы называются полупроводниками p-типа (рис. 2).

Примесная составляющая сопротивления полупроводников определяется формулой

. (3)

Полная электропроводность кристалла полупроводника складывается из собственной и примесной. При сравнительно низких температурах главную роль играет примесная проводимость, так как энергия активации примеси невелика. Но с ростом температуры, при почти полной ионизации сравнительно небольшого числа атомов примеси, рост концентрации электронов и дырок прекратится. Зато растет число электронов и дырок при ионизации собственных атомов кристалла. Собственная проводимость становится преобладающей при высоких температурах.

Е сли уравнения (2) и (3) прологарифмировать, то получим линейные уравнения для собственной и для примесной проводимости

, (4) . (5)

Логарифмы обоих видов сопротивлений линейно зависят от обратной температуры (рис. 3). Их угловые коэффициенты соответственно будут равны . Таким образом, можно по графику определить энергию активации. Если она будет около электрон-вольта, то это собственный полупроводник, если доли электрон-вольта, то это примесный полупроводник.