Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПОКАЗАТЕЛИ ВАРИАЦИИ 2.doc
Скачиваний:
1
Добавлен:
16.08.2019
Размер:
543.23 Кб
Скачать

Способы расЧётА дисперсии

Вычисление дисперсии по формуле среднего квадрата отклонений является до­вольно трудоемкой процедурой. Для облегчения расчетных ра­бот часто используются упрощенные способы определения дис­персии.

Преобразуем числитель выражения (10.3) следующим образом:

Разделив обе части этого равенства на n и имея в виду, что , получим:

Следовательно, дисперсия может быть определена как раз­ность, среднего квадрата вариантов и квадрата их средней. Об­ратимся вновь к данным табл.1 (столбцы IV,V,XII,XIII) и определим дисперсию этажности по этой формуле:

В интервальных рядах дисперсия может быть вычислена способом моментов или способом отсчета от условного нуля. Расчет производится по формуле:

где: - величина интервала;

- центральный момент распределения второго порядка;

- центральный момент распределения первого порядка.

Особый интерес представляет нахождение дисперсии альтер­нативного признака, т.е. признака, которым единицы изучае­мой совокупности могут либо обладать, либо не обладать. В таких случаях наличие признака обозначается единицей, а его отсутствие - нулем. Доля единиц, обладающих интересующим нас признаком, обозначается через р, доля остальных единиц, очевидно, составит q=1-р. Определим для этих условий среднюю величину и дисперсию.

Средняя:

Дисперсия доли альтернативного признака:

Среднее квадратическое отклонение

Правило сложения дисперсий

Если статистическую совокупность разбить на группы по какому-либо признаку, то средние величины и показатели вариации (дисперсии) могут быть определены как для всей совокупности в целом, так и для каждой группы в отдельности. Обозначения приняты следующие: для общих показателей подстрочные знаки (нижние индексы) не применяются – средняя , дисперсия ; у групповых показателей должен быть указан номер группы - от 1 до n. в общем виде номер обозначается обычно буквой i. Тогда групповые средние будут обозначены , и групповые дисперсии – это .

групповые дисперсии отражают величины внутригрупповых вариаций. По определению группировки эти вариации обусловлены влиянием всех факторов, за исключением того, который выбран в качестве группировочного признака. Все эти вариации можно выразить одним числом – через среднюю из групповых дисперсий:

Вместе с тем можно вычислить дисперсию групповых средних от общей средней, или межгрупповую дисперсию:

.

Эта дисперсия отражает вариацию групповых средних, складывающуюся исключительно под влиянием группировочного признака. Таким образом, общая вариация может рассматриваться как нечто, состоящее из внутригрупповых вариаций и межгрупповой вариации:

.

Это выражение принято называть правилом сложения дисперсий. В математической статистике даётся строгое доказательство этого положения. Впрочем, на основе всего вышеизложенного это представляется вполне очевидным.

На правиле сложения дисперсий построен раздел статистического анализа, именуемый дисперсионным анализом. Дело в том, что исходя из последней формулы, можно заметить, что межгрупповая дисперсия тем меньше по сравнению с общей дисперсией (и средней из групповых дисперсий ), чем меньшую существенность для изучаемого явления имеет группировочный признак. Это несложно измерить количественно – через долю межгрупповой дисперсии в дисперсии общей:

Этот показатель называют эмпирическим коэффициентом детерминации. Как и всякая доля, он колеблется в пределах от 0 до 1. при умножении на 100 он показывает, на сколько процентов вариация исследуемого явления обусловлена вариацией группировочного признака. При =100 связь является функциональной, т.к. группировочный признак безраздельно влияет на изучаемое явление.

В статистическом анализе также применяют квадратный корень из эмпирического коэффициента детерминации:

- эмпирическое корреляционное отношение.

Этот показатель служит, наряду с некоторыми другими, в качестве показателя тесноты связи между явлениями. Существует система количественных критериев оценки тесноты связи в зависимости от числового значения эмпирического корреляционного отношения. Её принято называть шкалой Чеддока:

0,9<η<0,99 – связь весьма сильная;

0,7<η<0,9 – связь сильная;

0,5<η<0,7 – связь умеренная;

0,3<η<0,5 – связь слабая;

η<0,3 - связь практически отсутствует.

8