Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОТВЕТЫ ГЭК ГЕОХИМИЯ И ГЕОФИЗИКА ЛАНДШАФТА.doc
Скачиваний:
35
Добавлен:
07.08.2019
Размер:
1.19 Mб
Скачать

Морфология элементарного ландшафта

Морфологические особенности элементарных ландшафтов изучены слабо. В некоторых работах приводятся сведения о площади и форме, вертикальном строении и мощности сделана попытка объяснить причину окраски элементарного ландшафта.

Площадь и форма элементарного ландшафта чаще всего зависят от рельефа, реже площадь — от породы. Элементарный ландшафт может занимать от нескольких квадратных метров до квадратных километров и более (низинные болота Полесья или Западной Сибири; солончаки и такыры Средней Азии). Элементарные ландшафты могут иметь круглую, эллипсовидную, полосчатую, зигзагообразную, дугообразную и некоторые другие формы. Вертикальный профиль элементарного ландшафта делится на ярусы, или горизонты (рис. 2).

В надземной части вертикального профиля элеменарного ландшафта выделен ярус живого вещества. Для этого яруса характерна концентрация элементов-органогенов (С, Н, О, N). Их соединения в летучих формах обусловливают специфический состав приземного воздуха. Мощность яруса живого вещества максимальная во влажных тропических лесах, минимальная — в водорослевых и лишайниковых сообществах пустынь.

Ниже располагается ярус почв, мощность которого определяется степенью интенсивности почвообразовательного процесса. В пределах этого яруса выделяются почвенные горизонты, которые отличаются содержанием элементов и их сочетанием. В почвенной толще протекают процессы взаимодействия между живыми организма­ми и органо-минеральными соединениями.

Ниже яруса почв расположена порода, где происхо­дят физико-химические процессы, которые носят общее название — процессы выветривания. Этот ярус называется ярусом коры выветривания.

Самый нижний ярус вертикального профиля ландшафта — ярус грунтовых вод. Геохимические особенности процессов, протекающих в этом ярусе, определя­ются режимом и составом вод и водовмещающих пород, а также составом химических элементов, поступающих из ярусов коры выветривания и почв.

В элементарных ландшафтах могут отсутствовать отдельные ярусы. Например, иногда верхний водоносный горизонт находится за пределами ландшафта (горный элювиальный ландшафт), в других случаях он совмещен с корой выветривания или почвой (торфяно-болотная почва), в третьих — кора выветривания совмещена с почвой (горные почвы).

Окраска ландшафта — важный морфологический признак. По современным представлениям окраска — физическое явление селективного поглощения или отражения кристаллом определенного диапазона электромагнитного излучения в пределах видимой области спектра (А. Н. Платонов, 1976).

Окраски минеральных соединений по их происхождению А. Е. Ферсман (1936) впервые разделил на идиохроматические, т. е. собственные; аллохроматические, вы­званные наличием в кристалле минерала второстепенных элементов — хромофоров (титан, железо, марганец, хром и др.); псевдохроматические, связанные с интерференционными явлениями.

Общая окраска ландшафта зависит от наиболее распространенных элементов и минералов, а также от органических соединений. Совокупность ионов кремния придает кварцевому песку прозрачность. Белый цвет почвенных новообразований степных и пустынных ландшафтов объясняется наличием кальция, натрия (корки солончаков, известковые конкреции). В ярусе почв и коры выветривания преобладают оттенки красного и желтого цвета как результат присутствия трехвалентного железа и гидрофильных его соединений. Зелено-голубой цвет глеевых горизонтов заболоченных почв определяется двухвалентным железом. Оттенки окраски изменяются также в зависимости от степени увлажненности породы. Влажная порода имеет более яркий и темный оттенок по сравнению с аналогичной сухой породой.

Окраску высших растений (от оранжевой до синей) создают антоцианы, которые содержатся почти во всех растительных тканях. К группе антоцианов относятся полифенолы. Цвет антоцианов определяется их структурой и физическими свойствами растворителя. С увеличением количества фенольных гидроксильных групп (ОН) цвет изменяется от розового к синему, а метилирование (СН3) гидроксильных групп — в обратном направлении. Кроме того, антоцианы меняют цвет под влиянием реакции среды, а также ионов металлов. Например, цианидин в кислом растворе имеет красный цвет, с увеличением рН интенсивность красного цвета уменьшается и при щелочной реакции цвет становится синим, а затем зеленым. После прибавления предварительно растворенного хлорида алюминия к раствору цианидина и его производных цвет раствора переходит из красного в синий.

Понижение температуры воздуха влияет на измене­ние цвета листьев высших растений, что объясняется накоплением в них прежде всего производных цианидина (С. С. Танчев, 1980).