Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
тех маш.docx
Скачиваний:
30
Добавлен:
07.07.2019
Размер:
783.93 Кб
Скачать

Измерительный инструмент.

Микрометр — универсальный инструмент (прибор), предназначенный для измерений линейных размеров абсолютным контактным методом в области малых размеров с высокой точностью (до 2 мкм), преобразовательным механизмом которого является микропара винт — гайка.

Штангенциркуль — универсальный инструмент, предназначенный для высокоточных измерений наружных и внутренних размеров, а также глубин отверстий.

Штангенциркуль — один из самых распространенных инструментов измерения, благодаря простой конструкции, удобству в обращении и быстроте в работе

Штангенциркуль, как и другие штангенинструменты (штангенрейсмас, штангенглубиномер), имеет измерительную штангу (отсюда и название этой группы) с основной шкалой и нониус — вспомогательную шкалу для отсчёта долей делений. Точность его измерения — десятые доли миллиметра.

На примере штангенциркуля ШЦ-I :

  1. штанга

  2. подвижная рамка

  3. шкала штанги

  4. губки для внутренних измерений

  5. губки для наружных измерений

  6. линейка глубиномера

  7. нониус

  8. винт для зажима рамки

Калибр — бесшкальный инструмент, предназначенный для контроля размеров, формы и взаимного расположения поверхностей детали.

Виды:

Калибры бывают предельными и нормальными. Нормальный калибр (шаблон) применяется для проверки сложных профилей. Предельный калибр имеет проходную и непроходную стороны (верхнее и нижнее отклонение номинального размера), что позволяет контролировать размер в поле допуска. Предельные калибры применяются для измерения цилиндрических, конусных, резьбовых и шлицевых поверхностей. При конструировании предельных калибров должен выполняться принцип Тейлора, согласно которому проходной калибр является прототипом сопрягаемой детали и контролирует размер по всей длине соединения с учетом погрешностей формы. Непроходной калибр должен контролировать только собственно размер детали и поэтому имеет малую длину для устранения влияния погрешностей формы.

Методы обеспечения заданной точности.

Точностью изделия в машиностроении называют степень соответствия заранее установленному образцу. Под точностью детали понимается степень соответствия реальной детали, полученной механической обработкой заготовки, по отношению к детали, заданной чертежом и техническими условиями на изготовление, т.е. соответствие формы, размеров, взаимного расположения обработанных поверхностей, шероховатости поверхности обработанной детали требованиям чертежа.

При работе на металлорежущих станках применяют следующие методы достижения заданной точности:

а) обработка по разметке или с использованием пробных проходов путем последовательного приближения к заданной форме и размерам; после каждого прохода инструмента производится контроль полученных размеров, после чего решают какой припуск необходимо снять; точность в этом случае зависит от квалификации рабочего, например токаря или фрезеровщика;

б) обработка методом автоматического получения размеров, когда инструмент предварительно настраивается на нужный размер, а затем обрабатывает заготовки в неизменном положении; в этом случае точность зависит от квалификации наладчика и способа настройки;

в) автоматическая обработка на копировальных станках и станках с программным управлением, в которых точность зависит от точности действия системы управления.

Но какой бы станок или способ обработки не применялся, несколько деталей, даже обработанных на одном и том же станке одним и тем же инструментом, будут немного отличаться друг от друга. Это объясняется появлением неизбежных погрешностей обработки, которые служат мерой точности обработанной детали.

Таким образом, к причинам, вызывающим появление погрешностей при обработке резанием, будь-то токарная обработка, сверление или фрезерование, можно отнести следующие:

  1. неточности самого металлорежущего станка, вызванное погрешностями изготовления его деталей и неточностями сборки;

  2. погрешности установки заготовки;

  3. неточности изготовления, установки, настройки и износ режущего инструмента;

  4. упругие деформации технологической системы;

  5. тепловые деформации технологической системы;

  6. остаточные деформации в заготовке;

  7. изношенность направляющих, ходовых винтов и в целом самого станка и др.