Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Voprosy_zachet_SISPO2011.docx
Скачиваний:
1
Добавлен:
29.04.2019
Размер:
134.36 Кб
Скачать

4 Процессы и треды

Понятие процесса было введено для реализации идей мультипрограммирования. Напомним, в свое время различали термины «мультизадачность» и «мультипрограммирование». Таким образом, для реализации «мультизадачности» в еѐ исходном толковании необходимо было тоже ввести соответствующую сущность. Такой сущностью и стали так называемые «легковесные» процессы, или, как их теперь преимущественно называют, – потоки или треды (нити). Рассмотрим эти понятия подробнее.

Когда говорят о процессах (process), то тем самым хотят отметить, что операционная система поддерживает их обособленность: у каждого процесса имеется свое виртуальное адресное пространство, каждому процессу назначаются свои ресурсы – файлы, окна, семафоры и т. д. Каждый тред выполняется строго последовательно и имеет свой собственный программный счѐтчик и стек.

Треды, как и процессы, могут порождать треды-потомки, поскольку любой процесс состоит, по крайней мере, из одного треда. Подобно традиционным процессам (то есть процессам, состоящим из одного треда), каждый тред может находится в одном из активных состояний. Пока один тред заблокирован (или просто находится в очереди готовых к исполнению задач), другой тред того же процесса может выполняться. Треды разделяют процессорное время так же, как это делают обычные процессы, в соответствии с различными вариантами диспетчеризации. Как мы уже знаем, все треды имеют одно и то же виртуальное адресное пространство своего процесса. Это означает, что они разделяют одни и те же глобальные переменные. Поскольку каждый тред может иметь доступ к каждому виртуальному адресу, один тред может использовать стек другого треда

Потоки хорошо работают, когда они независимы. Но они начинают работать непродуктивно, если вынуждены часто синхронизироваться для доступа к общим ресурсам. Блокировка и критические секции отнюдь не увеличивают скорость работы системы, хотя без использования этих механизмов взаимодействующие вычисления организовывать нельзя.

Не возлагайте на поток несколько функций. Сложные функциональные отношения затрудняют понимание общей структуры приложения, его алгоритм. Чем проще и менее многозначна каждая из рассматриваемых ситуаций, тем больше вероятность, что ошибок удастся избежать.

Таким образом, до окончания обращения одной задачи к общим переменным следует исключить возможность обращения к ним другой задачи. Эта ситуация и называется взаимным исключением. Другими словами, при организации различного рода взаимодействующих процессов приходится организовывать взаимное исключение и решать проблему корректного доступа к общим переменным (критическим ресурсам). Те места в программах, в которых происходит обращение к критическим ресурсам, называются критическими секциями или критическими интервалами (Critical Section – CS). Решение этой проблемы заключается в организации такого доступа к критическому ресурсу» когда только одному процессу разрешается

входить в критическую секцию. Данная задача только на первый взгляд кажется простой, ибо критическая секция, вообще говоря, не является последовательностью операторов программы, а является процессом, то есть последовательностью действий, которые выполняются этими операторами. Другими словами, несколько процессов, которые выполняются по одной и той же программе, могут выполнять критические интервалы, базирующиеся на одной и той же последовательности операторов программы.

Когда какой-либо процесс находится в своѐм критическом интервале, другие процессы

5 Основной особенностью мультипрограммных операционных систем является то, что в их среде параллельно развивается несколько (последовательных) вычислительных процессов. С точки зрения внешнего наблюдателя эти последовательные вычислительные процессы, выполняются одновременно, мы будем использовать термин «параллельно». При этом под параллельными понимаются не только процессы, одновременно развивающиеся на различных процессорах, каналах и устройствах ввода/вывода, но и те последовательные процессы, которые разделяют центральный процессор и хотя бы частично перекрываются во времени. Любая мультипрограммная операционная система вместе с параллельно выполняющимися в ней задачами пользователей может быть логически описана как совокупность последовательных процессов, которые, с одной стороны, состязаются за использование ресурсов, переходя из одного состояния в другое, а с другой – действуют почти независимо друг от друга, но образуют систему вследствие установления всевозможного рода связей между ними (путем пересылки сообщений и синхронизирующих сигналов).

Итак, параллельными мы будем называть такие последовательные вычислительные процессы, которые одновременно находятся в каком-либо активном состоянии. Два параллельных процесса могут быть независимыми (independing processes) либо взаимодействующими (cooperating processes).

Независимыми являются процессы, множества переменных которых не пересекаются. Под переменными в этом случае понимают файлы данных, а также области оперативной памяти, сопоставленные определѐнным в программе и промежуточным переменным. Независимые процессы не влияют на результаты работы друг друга, так как не могут изменить значения переменных другого независимого процесса. Они могут только явиться причиной задержек исполнения других процессов, так как вынуждены разделять ресурсы системы.

Взаимодействующие процессы совместно используют некоторые (общие) переменные, и выполнение одного процесса может повлиять на выполнение другого.

Многие ресурсы вычислительной системы могут совместно использоваться несколькими процессами, но в каждый момент времени к разделяемому ресурсу может иметь доступ только один процесс. Ресурсы, которые не допускают одновременного использования несколькими процессами, называются критическими.

Процессы, выполняющие общую совместную работу таким образом, что результаты вычислений одного процесса в явном виде передаются другому, то есть их работа построена именно на обмене данными, называются сотрудничающими .В сотрудничающих процессов удобно всего рассматривать в схеме «производитель – потребитель» (producer – consumer) или, как часто говорят – «поставщик – потребитель». Допустим, что «поставщик» – это процесс, который отправляет порции информации (сообщения) другому процессу, имя которого «потребитель». В этом случае между процессами «поставщик» и «потребитель» будем иметь очередь заполненных буферов, содержащих сообщения. Когда «поставщик» хочет послать очередное сообщение, он добавляет в конец этой очереди ещѐ один буфер. «Потребитель», чтобы получить сообщение, забирает из очереди буфер, который стоит в еѐ начале. Такое решение, хотя и кажется тривиальным, требует, чтобы 11 «поставщик» и «потребитель» синхронизировали свои действия. Например, они должны следить за количеством свободных и заполненных буферов. «Поставщик»

может передавать сообщения только до тех пор, пока имеются свободные буферы. Аналогично, «потребитель» может получать сообщения только если очередь не пуста. Ясно, что для учѐта заполненных и свободных буферов нужны разделяемые переменные, поэтому для сотрудничающих процессов, как и для конкурирующих, тоже возникает необходимость во взаимном исключении.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]