Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КСЕ.docx
Скачиваний:
4
Добавлен:
25.04.2019
Размер:
550.87 Кб
Скачать

11. Распределение Максвелла. Распределение Больцмана. Распределение Максвелла

М олекулы газа вследствие теплового движения испытывают многочисленные соударения друг с другом. При каждом соударении скорости молекул изменяются как по величине, так и по направлению. В результате в сосуде, содержащем большое число молекул, устанавливается некоторое статистическое распределение молекул по скоростям, зависящее от абсолютной температуры Т. При этом все направления векторов скоростей молекул оказываются равноправными (равновероятными), а величины скоростей подчиняются определенной закономерности. Распределение молекул газа по величине скоростей называется распределением Максвелла.

Если одновременно измерить скорости большого числа N молекул газа и выделить некоторый малый интервал скоростей от v до v+ v, то в выделенный интервал  v попадает некоторое число  N молекул. На графике удобно изображать зависимость величины   от скорости v. При достаточно большом числе N эта зависимость изображается плавной кривой, имеющей максимум при   (наиболее вероятная скорость). Здесь m - масса молекулы,  - постоянная Больцмана.

Х арактерным параметром распределения Максвелла является так называемая среднеквадратичная скорость  означает среднее значение квадрата скорости. В молекулярной физике доказывается, что

где  - молярная масса.

Из выражения для среднеквадратичной скорости следует, что средняя кинетическая энергия поступательного движения молекул газа есть

Р аспределение Максвелла является одной из важнейших статистических закономерностей молекулярной физики.

Доска Гальтона (опытное обоснование)

Д ля лучшего уяснения статистического характера задачи о распределении скоростей молекул может служить прибор, называемый доской Гальтона. Это - доска, с передней стороны прикрытая стеклом, в которую в шахматном порядке достаточно часто вбиты гвозди. Вверху над гвоздями в средней части доски помещена воронка, в которую можно сыпать песок, зёрна пшена, или другие частицы. Если бросить в воронку одну частицу, то при падении вниз она испытает множество столкновений с гвоздями и в конце концов упадёт на стол на определённом расстоянии от центра доски (см. анимацию). На каком расстоянии от центра доски упадёт частица предсказать невозможно из-за множества случайных факторов, влияющих на её движение. Можно говорить лишь о вероятности отклонения частицы на то или иное расстояние. Естественно ожидать, что падение частицы в центральной части стола более вероятно, чем по краям. И действительно, если через воронку сыпать частицы непрерывно, то оказывается что в центральной части стола, находящейся под отверстием воронки, скапливается наибольшее число частиц, а по краям доски их наоборот очень мало. При очень большом количестве частиц прошедших через воронку, вырисовывается вполне определённая статистическая закономерность их распределения. Оказывается, что при очень большом числе частиц кривая асимптотически приближается к кривой вида y = j(x) = Aexp (-ax2), где A и a - константы, а сама формула выражает так называемый нормальный закон ошибок Гаусса(1777-1855). Скорости молекул газа распределены по такому же закону и определяя константы A и aдля газа из условий нормировки и других дополнительных предположений мы приходим к распределению Максвелла.

БОЛЬЦМАНА РАСПРЕДЕЛЕНИЕ - распределение по энергиям частиц (атомов, молекул) идеального газа в условиях термодинамического равновесия. Б. р. было открыто в 1868 - 1871 гг. австр. физиком Л. Больцманом. Согласно Б. р., число частиц ni с полной энергией ei равно:

ni = A wie-ei/kT            (1)

где wi - статистич. вес (число возможных состояний частицы с энергией ei). Постоянная А находится из условия, что сумма ni по всем возможным значениям i равна заданному полному числу частиц N в системе (условие нормировки):  . В случае, когда движение частиц подчиняется классич. механике, энергию ei можно считать состоящей из кинетич. энергии ei, кин  частицы (молекулы или атома), её внутр. энергии ei, вн (напр., энергии возбуждения электронов) и потенциальной энергии ei, пот во внеш. поле, зависящей от положения частицы в пространстве:

ei = ei, кин + ei, вн + ei, пот            (2)

Распределение частиц по скоростям (Максвелла распределение) явл. частным случаем Б. р. Оно имеет место, когда можно пренебречь внутр. энергией возбуждения ei, вн и влиянием внеш. полей ei, пот. В соответствии с (2) ф-лу (1) можно представить в виде произведения трёх экспонент, каждая из к-рых даёт распределение частиц по одному виду энергии.

В пост. поле тяжести, создающем ускорение g, для частиц атмосферных газов вблизи поверхности Земли (или др. планет) потенц. энергия пропорциональна их массе m и высоте H над поверхностью, т.е. ei, пот = mgH. После подстановки этого значения в Б. р. и суммирования по всевозможным значениям кинетич. и внутр. энергий частиц получается барометрическая формула, выражающая закон уменьшения плотности атмосферы с высотой.

В астрофизике, особенно в теории звёздных спектров, Б. р. часто используется для определения относительной заселённости электронами различных уровней энергии атомов. Если обозначить индексами 1 и 2 два энергетич. состояния атома, то из Б. р. следует:

n2/n1 = (w2/w1)e-(e2-e1)/kT            (3)

(ф-ла Больцмана). Разность энергий e2-e1 для двух нижних уровней энергии атома водорода >10 эВ, а значение kT, характеризующее энергию теплового движения частиц для атмосфер звёзд типа Солнца, составляет всего лишь 0,3-1 эВ. Поэтому водород в таких звёздных атмосферах находится в невозбуждённом состоянии. Так, в атмосферах звёзд, имеющих эффективную температуру Тэ > 5700 К (Солнце и др. звёзды спектральных классов G2 п G3), отношение чисел атомов водорода во втором и осн. состояниях равно 4,2.10-9.

Б. р. было получено в рамках классич. статистики. В 1924-26 гг. была создана квантовая статистика. Она привела к открытию распределений Бозе - Эйнштейна (для частиц с целым спином) и Ферми - Дирака (для частиц с полуцелым спином). Оба эти распределения переходят в Б. р., когда ср. число доступных для системы квантовых состояний значительно превышает число частиц в системе, т. о. когда на одну частицу приходится много квантовых состояний или, др. словами, когда степень заполнения квантовых состояний мала. Условие применимости Б. р. можно записать в виде неравенства:

<1 (4)

где N - число частиц, V - объём системы. Неравенство (4) выполняется при высокой темп-ре и малом числе частиц в ед. объёма (N/V). Из (4) следует, что чем больше масса частиц, тем для более широкого интервала изменений Т п N/V справедливо Б. р. Напр., внутри белых карликов неравенство (4) нарушается для электронного газа, и поэтому его св-ва следует описывать с помощью распределения Ферми - Дирака. Однако ф-ла (4), а с ней и Б. р. остаются справедливыми для ионной составляющей вещества. В случае газа, состоящего из частиц с нулевой массой покоя (напр., газа фотонов), неравенство (4) не выполняется ни при каких значениях Т и N/V. Поэтому равновесное излучение описывается Планка законом излучения, к-рый явл. частным случаем распределения Бозе - Эйнштейна.

n = n0exp( -mgh / kT )

где n - концентрация молекул на высоте h, n0 - концентрация молекул на начальном уровне h = 0, m - масса частиц, g - ускорение свободного падения, k - постоянная Больцмана, T - температура.

Мы можем видеть, что концентрация молекул у дна сосуда оказывается выше, чем концентрация в верхней части сосуда. Под действием теплового движения молекулы подбрасываются вверх, а затем падают вниз за счет действия сил тяжести.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]