Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3-10.doc
Скачиваний:
7
Добавлен:
16.04.2019
Размер:
1.13 Mб
Скачать

6. 1. Информация, ее свойства. Меры информации

1. Объективность и субъективность. Понятие объективности является относительным, т.к. методы являются субъективными. Более объективной принято считать ту информацию, в которую методы вносят меньший субъективный элемент.  2. Достоверность. Данные возникают в момент регистрации сигналов, но не все сигналы являются полезными, всегда присутствует уровень посторонних сигналов. Если полезный сигнал зарегистрирован четко, чем посторонний сигнал уровень доступности будет высокий. При увеличении уровня шумов достоверность информации снижается. 3. Полнота. Характеризует качество информации и определяет достаточность данных для принятия решений или для создания данных на основе имеющихся. 4. Адекватность. Степень соответствия реальному объективному состоянию дела. Неадекватная информация может образоваться при создании новой информации на основе неполных или недостоверных данных.  5. Доступность. Мера возможности получить ту или иную информацию. На степень доступности информации влияют одновременно как доступность данных, так и адекватность. 6. Актуальность. Степень соответствия информации данному моменту времени. Меры информации Синтаксические меры информации. Объем данных в сообщении измеряется количеством символов (разрядов) принятого алфавита в этом сообщении. Часто информация кодируется числовыми кодами в той или иной системе счисления. Естественно, что одно и то же количество разрядов в разных системах счисления способно передать разное число состояний отображаемого объекта. Семантическая мера информации. Для измерения смыслового содержания информации, то есть ее количества на семантическом уровне, наибольшее признание получила тезаурусная мера информации, которая связывает семантические свойства информации со способностью пользователя воспринимать поступившее сообщение. Прагматическая мера информации Прагматическая мера информации — это полезность информации, ее ценность для пользователя (управления). Эта мера также является величиной относительной, обусловленной особенностями использования информации в той или иной системе управления. Ценность информации целесообразно измерять в тех же самых единицах (или близких к ним), в которых измеряется целевая функция

7. Качество информации

Качество информации является одним из важнейших параметров для потребителя информации. Оно определяется следующими характеристиками:

  1. репрезентативность – правильность отбора информации в целях адекватного отражения источника информации. Например, в целях большей репрезентативности данных о себе абитуриенты стремятся представить в приемную комиссию как можно больше свидетельств, дипломов, удостоверений и другой информации, подтверждающей их высокий уровень подготовки, что учитывается при зачислении в ВУЗ;

  1. содержательность – семантическая емкость информации. Рассчитывается как отношение количества семантической информации к ее количеству в геометрической мере. Это характеристика сигнала, про который говорят, что «мыслям в нем тесно, а словам просторно». В целях увеличения содержательности сигнала, например, используют для характеристики успеваемости абитуриента не полный перечень его аттестационных оценок, а средний балл по аттестату;

  1. достаточность  (полнота) – минимальный, но достаточный состав данных для достижения целей, которые преследует потребитель информации. Эта характеристика похожа на репрезентативность, однако разница состоит в том, что в данном случае учитывается минимальный состав информации, который не мешает принятию решения. Например, абитуриент – золотой медалист может не представлять в приемную комиссию свой аттестат: диплом, подтверждающий получение золотой медали, свидетельствует о полном наборе отличных оценок в аттестате;

  1. доступность – простота (или возможность) выполнения процедур получения и преобразования информации. Эта характеристика применима не ко всей  информации, а лишь к той, которая не является закрытой. Для обеспечения доступности бумажных документов используются различные средства оргтехники для их хранения, а для облегчения их обработки используются средства вычислительной техники;

  1. актуальность – зависит от динамики изменения характеристик информации и определяется сохранением ценности информации для пользователя в момент ее использования. Очевидно, что касается информации, которая используется при зачислении, она актуальна, так как само обучение уже закончилось, и его результаты изменены быть не могут, а, значит, остаются актуальными;

  1. своевременность – поступление не позже заранее назначенного срока. Этот параметр также очевиден недавним абитуриентам: опоздание с представлением позитивной информации о себе при поступлении может быть чревато незачислением;

  1. точность – степень близости информации к реальному состоянию источника информации. Например, неточной информацией является медицинская справка, в которой отсутствуют данные о перенесенных абитуриентом заболеваниях;

  1. достоверность – свойство информации отражать источник информации с необходимой точностью. Эта характеристика вторична относительно точности. В предыдущем примере получаемая информация недостоверна;

  1. устойчивость – способность информации реагировать на изменения исходных данных без нарушения необходимой точности.

Количество и качество информации

Исследованием методов передачи, хранения и приема информации занимается теория информации, инструментами которой служат теория случайных процессов, теория кодирования, математическая статистика, теория вероятностей. Внимание к проблеме передачи и количественной оценки информации было привлечено фундаментальными работами Н. Винера и К. Шеннона (США), положившими начало теории информации. Значительный вклад в теорию информации внесли отечественные ученые А.Н. Колмогоров, А.А. Харкевич, В.А. Котельников, работы которых хорошо известны специалистам во всем мире.

Важнейшим этапом в теории развития информации явилась количественная оценка информации. Только принимая за основу новизну сведений, можно дать количественную оценку информации', так как новизна сведении является следствием неопределенности сведений об объекте, процессе, явлении, а неопределенность поддается измерению. Например, сообщение имени победившего на выборах в президенты, если было всего два кандидата, несет меньшее количество информации по сравнению со случаем, если бы выборы происходили в конкурентной борьбе пяти кандидатов.

Основываясь на идее, что информация устраняет некоторую неопределенность, т. е. незнание, описание любого события или объекта формально можно рассматривать как указание на то, в каком из возможных состояний находится описываемый объект. Тогда протекание событий во времени есть не что иное, как смена состояний, выбранных с некоторой вероятностью из числа всех возможных. Чем выше уровень неопределенности выбора, тем требуется больший объем информации, и результат выбора имеет значительную степень неожиданности. Вот почему в теории информации количество информации является мерой снятия неопределенности одной случайной величины в результате наблюдения за другой. Если величины независимы, то количество информации равно нулю.

Самым простейшим случаем является выбор альтернативы из двух событий. Поэтому за единицу информации целесообразно принять количество информации, заключенное в выборе одного из двух равновероятных событий. Эта единица называется двоичной единицей, или битом ( binary digit, bit). Итак, при любой неопределенности сужение области выбора вдвое дает одну единицу информации. В физике существует понятие энтропии, которая характеризует степень неупорядоченности (хаотичности) физической системы. Неупорядоченность может быть интерпретирована в смысле того, насколько мало известно наблюдателю о данной системе. Как только наблюдатель выявил что-нибудь в физической системе, так энтропия системы снизилась, ибо для наблюдателя система стала более упорядоченной. И если максимум энтропии соответствует абсолютно случайному состоянию системы, то максимум информации характеризует полностью упорядоченную (детерминированную) систему. Одним словом, энтропия системы выражает степень ее неупорядоченности, а информация дает меру ее организации.

Формулу измерения количества информации можно получить эмпирически:

для снятия неопределенности в ситуации из двух равно невероятных событий необходим один бит информации; при неопределенности, состоящей из четырех событий, достаточно двух бит информации, чтобы угадать искомый факт. Это рассуждение можно продолжить: 3 бита информации соответствуют неопределенности из 8 равновероятных событий, 4 бита — 16 равновероятных событий и т. д. Таким образом, если сообщение указывает на один из п равновероятных вариантов, то оно несет количество информации, равное log 2 n. Действительно, из наших примеров log 2 l6 = 4, log 2 8 = 3 и т. д. Ту же формулу можно словесно выразить иначе: количество информации равно степени, в которую необходимо возвести 2, чтобы получить число равноправных вариантов выбора, т. е. 2i = 16, где i = 4 бита.

Будем различать понятия “информация” и “сообщение”. Под сообщением обычно подразумевают информацию, выраженную в определенной форме и подлежащую передаче.Сообщение — это форма представления информации. Есть одна особенность, которая связана с количеством хранимой или переданной информации, представленной в двоичных единицах, и количеством информации, заключенным в данном сообщении. С точки зрения теории информации, неопределенность, снимаемая в результате передачи одной страницы текста примерно из 2000 знаков, может составлять всего несколько бит (неинформативное сообщение), в то время как эта же страница при кодировании букв 8-элементными кодовыми комбинациями будет содержать 16 х 103 бит, хотя это не есть количество информации, заключенное в данном тексте.

Измерение только количества информации не отвечает насущным потребностям современного общества - необходима мера ценности информации. Проблема определения ценности информации исключительно актуальна в настоящее время, когда уже трудно даже с помощью компьютеров обрабатывать мощные информационные потоки. Разработанные методы определения ценности информации призваны сыграть существенную роль в получении человеком необходимой информации. Вообще, оценка значимости информации производится человеком часто интуитивно на основе использования интеллекта и опыта. Информация называется полезной, если она уменьшает неопределенность решающего алгоритма. По мнению М.М. Бонгарда, не имеет смысла говорить о полезной информации, содержащейся в сигнале, если не указаны задача, которая решается, начальное состояние решающего алгоритма и свойства декодирующего алгоритма. Американским ученым Н. Винером предпринята попытка построить семантическую теорию информации. Суть ее состоит в том, что для понимания и использования информации ее получатель должен обладать определенным запасом знаний. Действительно, полное незнание предмета не позволяет извлечь существенной научной информации из принятого сообщения об этом предмете. По мере роста наших знании о предмете растет и количество научной информации, извлекаемой из сообщения.

Если назвать имеющиеся у получателя знания о данном предмете тезаурусом (т. е. неким сводом слов, понятий, названий объектов, связанных смысловыми связями), то количество информации, содержащейся в некотором сообщении, можно оценить степенью изменения индивидуального тезауруса под воздействием данного сообщения. Иными словами, количество семантической информации, извлекаемой получателем из поступающих сообщении, зависит от степени подготовленности его тезауруса для восприятия такой информации. В связи с этим появилось понятие общечеловеческого тезауруса, относительно которого можно было бы измерять семантическую ценность научной информации. Это сделано в попытках найти такую меру ценности информации, которая не зависела бы от состояния ее индивидуального приемника.

Пока можно сделать вывод, что задача определения ценности информации при достаточной степени формализации, которая требуется при компьютеризованной оценке, еще не решена, однако это не означает невозможности ее решения в будущем.

Качество информации – совокупность свойств, отражающих степень пригодности данной информации для достижения определенных целей и решения конкретных задач, стоящих перед пользователем. Следует иметь в виду, что качество одной и той же информации для реализации разных проектов различаются. В состав наиболее общих параметров, задающих качество информации входят: достоверность, своевременность, новизна, ценность, полезность и доступность.

1. Достоверность – свойство информации отражать реально существующие факты.  Любая информация отражает реальность с определенной степенью погрешности.  Допустимая погрешность, определяется целевой установкой при реализации конкретной деятельности и зависит от уровня изученности объекта.

2. Своевременность – поступление информации в то время, когда она полезна для принятия решений, и когда она может повлиять на результат.  Несвоевременная информация затягивает процесс принятия решений, приводит к состоянию неопределенности при реализации деятельности.  Однако, даже несвоевременно поступившая информация может быть полезна, поскольку может использоваться для принятия других аналогичных решений, для корректировки уже принятых решений, выявления причин неэффективности реализованных задач в условиях неопределенности.

3. Новизна – существуют различные уровни новизны: впервые созданное, забытое старое, недостаточно изученное и малознакомое. Новой информацией считают ту, которая не повторяет тождественного или аналогичного. Неновая информация – та, которая до сих пор не утратила своей ценности.

4. Ценность информации – ее важность и нужность при принятии решений.  Не  существует объективных критериев определения ценности информации. Любая ценность информации проверяется на практике. Одна и та же информация может быть ценной для одной категории пользователей и совершенно бесполезной для другой.

5. Полезность – характеризует пригодность для решения поставленных задач. Бывает случаи, когда недостоверная и ложная информация бывает полезной для определенной группы пользователей.

6. Доступность информации – возможность получения информации пользователем. Зависит от многих факторов:

  • возможность получить информацию в заданное время;

  • возможность получить доступ к информационным источникам, содержащим требуемую информацию;

  • ограничения, налагаемые владельцами информации.

Включение информации в коммуникативную систему не означает, что доступ к ней облегчается. Он становится жестко регламентированным. В основном доступность регламентируется системой ограничений, разработанной внутри организации, а также на региональном, государственном и международном уровне.

8.Структура информационного процесса

Структура информационного процесса

При переносе информации в виде сигнала от источника к потребителю (пояснения на схеме см. в разделе Информация)

она проходит последовательно следующие фазы (говорят – фазы обращения), составляющие информационный процесс:

  1. Восприятие (если фаза реализуется технической системой) или сбор (если фаза реализуется человеком) – осуществляет отображение источника информации в сигнал. Здесь определяются качественные и количественные характеристики источника, существенные для решения задач потребителя информации, для чего и собирается или воспринимается информация. Совокупность этих характеристик создает образ источника, который фиксируется в виде сигнала на носителе той или иной природы (бумажном, электронном и т.п.).

  1. Передача – перенос информации в виде сигнала в пространстве посредством физических сред любой природы. Включается в информационный процесс, если места выполнения других фаз информационного процесса территориально разобщены.

  1. Обработка – любое преобразование информации с целью решения определенных функциональных задач (они определяются потребителем информации). Данная фаза может включать хранение информации как перенос ее во времени.

  1. Представление (если потребителем информации является человек) или воздействие (если потребителем является техническая система). В первом случае выполняется подготовка информации к виду, удобному для потребителя (графики, тексты, диаграммы, таблицы и т.д.). Во втором случае вырабатываются управляющие воздействия на технические средства. Этот случай характерен для выпускников специальности "Автоматизация управления технологическими процессами", а потому здесь не рассматривается

Схематично информационный процесс изображен на рисунке:

Прямоугольниками изображены процедуры (фазы), другие фигуры обозначают объекты. Пунктирные прямоугольники показывают, что эти фазы могут отсутствовать.

Как видно из рисунка, каждая фаза в общем случае преобразует (или отображает) входной сигнал в выходной. Например, при обработке сигнал Sпреобразуется в сигнал S4. Это делается для удобства проведения следующей процедуры или, в последнем случае, для удобства потребителя.

Пример 1. Рассмотрим информационный процесс, имеющий место при приеме в ВУЗ абитуриентов, к числу которых в недавнем времени относился и наш читатель (при этом отметим, что подобный информационный процесс, когда решается некоторая задача преобразования информации из конкретной предметной области, называется предметным). Названные на рисунке элементы представлены ниже:

  • источник информации – абитуриент, сведения о знаниях и других достоинствах которого являются основанием для зачисления в ВУЗ. Сигнал S1 – это документы (например, аттестат о среднем образовании), которые сдаются в приемную комиссию;

  • сбор информации выполняется работниками приемной комиссии, куда стекаются сведения о прошлых успехах абитуриента и результатах вступительных испытаний. Очевидны качественные и количественные характеристики источника-абитуриента: это баллы в аттестате, различные квалификации, которые он приобрел в результате обучения на дополнительных курсах и факультативах, медицинские справки и т.д. При этом собираемые данные регистрируются, например, записываются в сводные ведомости, где по каждому студенту фиксируются  данные о нем. Формируется сигнал S2 (в этом случае он носит бумажный характер). Возможно также использование технических систем для регистрации собранных данных. Если приемная комиссия снабжена компьютерной техникой, сигнал Sносит электронный характер. В любом случае, как правило, применяется фиксация информации на бумажном носителе;

  • передача информации. В простейшем случае это передача данных курьером (работником приемной комиссии) тому лицу, который занимается их обработкой. При этом, очевидно, никаких изменений с данными не происходит (если только курьер их не потеряет), т.е. сигналы S2 и S3 равны. Если возможно использование технических систем для передачи информации, этот процесс механизирован или автоматизирован (в случае применения ЭВМ). При автоматизации передачи возможно несовпадение сигналов S2 и S3 по их синтаксическим характеристикам, что связано с особенностями этой процедуры и подробнее рассматривается далее;

  • обработка сводится к упорядочению списка абитуриентов в зависимости от качественных и количественных параметров (они назывались выше). Тогда   самые достойные на зачисление оказываются в начале списка и первыми включаются затем в приказ. Эту работу выполняют в приемной комиссии (такая задача в несколько упрощенном виде использована ранее). Тогда сигнал S4– это упорядоченный список абитуриентов, разбитый на группы по специальностям. Очевидно, эта фаза может выполняться вручную, но именно для подобных задач используются средства вычислительной техники, и в первую очередь - компьютеры;

  • передача упорядоченного списка абитуриентов в деканат, занимающийся формированием учебных групп по каждой специальности, аналогично первой процедуре передачи может выполняться как человеком, так и техническими системами. Как отмечалось выше, в первом случае сигналы S4 и S5 могут совпадать, во втором - могут различаться;

  • представление списков абитуриентов, разбитых на группы, выполняется деканатами. Сигнал S6 имеет вид таблиц, включающих фамилии и инициалы абитуриентов. Каждая из таблиц соотнесена с той или иной учебной группой;

  • потребитель информации – ректор ВУЗа, который  готовит и визирует приказ о зачислении в ВУЗ.

Пример 2. Сформируем схему обращения информации при сдаче студентами сессии:

Сигнал S- это ответы студентов на экзаменах, которые анализируются преподавателем и оцениваются, как правило, по пятибалльной системе (фаза Сбор). В результате формируется ведомость сдачи экзамена (сигнал S2), которая секретарем кафедры (или самим преподавателем) передается в деканат того факультета, к которому "приписаны" студенты (фаза Передача). Очевидно, если по дороге не случается фальсификации, сигналы Sи Sсовпадают. В деканате ведомость попадает методисту, который выполняет ее обработку - заполняет специальный журнал успеваемости, где собираются данные об успеваемости каждого студента за все время обучения в Вузе (фаза Обработка). Можно сказать, что сам журнал (сигнал S4)выполняет функцию хранения информации (на рисунке эта фаза не показана). По окончании срока сессии методист готовит для декана справку о результатах сессии по всем учебным группам студентов: списки неуспевающих, списки студентов, претендующих на стипендию, списки тех, кто может получать повышенную (именную) стипендию и т.д. (фаза Представление). Эта справка и есть сигнал S6, который поступает декану для решения типичных для деканата задач: отчисление студентов, перевод на следующий курс или на другую специальность (другое учебное заведение), восстановление и т.п. Следует отметить, что некоторые фазы, в свою очередь, могут рассматриваться как совокупность последовательных операций, среди которых можно выделить операции, аналогичные рассмотренным фазам. Например, в фазеОбработка, как будет показано далее, имеет место сбор информации. Это говорит о том, что детализация информационных процессов определяется уровнем их рассмотрения с целью последующей автоматизации, т.е. решения соответствующих задач с помощью компьютера.

Для реализации большинства рассмотренных выше процедур, составляющих информационный процесс, используется компьютер. Однако и сам компьютер можно рассматривать как устройство переноса информации от источника к потребителю. Такая постановка вопроса позволяет лучше понять происходящие внутри компьютера информационные процессы, направленные на решение поставленных перед ним задач; она рассматривается

Понятие и структура информационного процесса

Под информационным процессом понимается процесс взаимодействия между двумя объектами материального мира, в результате которого возникает информация.

Сообщение, отображающее информацию, всегда представляется в виде сигнала. Под сигналом понимается изменение состояния некоторого объекта.

В зависимости от среды объекта сигналы могут быть механические, электрические, световые и т. д. Можно считать, что сигналы являются отображением сообщений. Но возможен и обратный процесс. От материального объекта поступает сигнал, который далее становится источником сообщения.

От объекта управления могут поступать статические и динамические сигналы. Статические сигналы отображают устойчивое состояние объекта - это положение элементов в системе, состояние прибора, текст в документе. Эти сигналы участвуют в процессах подготовки, хранении, накоплении информации.

Динамические сигналы характеризуют быстрое изменение во времени, они могут отображать изменения электрических параметров системы. Они участвуют в процессах передачи информации и в управлении.

На логическом уровне сигналы разделяются на непрерывные и дискретные. Непрерывный сигнал отображается непрерывной функцией. Физически он представляет собой непрерывно изменяющееся значение колебаний.

Дискретный сигнал определяется конечным множеством значений, которое отражает определенное состояние физического объекта.

При формализации реальные сигналы представляются следующими видами функций:

  • Непрерывная функция непрерывного аргумента. Функция f(t) непрерывна на всем отрезке ее рассмотрения. Она описывает реальный сигнал в любой момент времени своим мгновенным значением, при этом никаких ограничений на выбор значений функция в момент времени не накладывается.

  • Непрерывная функция дискретного аргумента. Функция f(ti) непрерывна, но определяется лишь для дискретных моментов времени ti, которое выбирается с шагом квантования по времени ∆t. Шаг квантования задается исходя из свойств исходного физического процесса. Такая функция применяется при переходе от непрерывного представления сигнала к дискретному на основе теоремы Котельникова. Это процесс квантования непрерывной величины по времени.

  • Дискретная функция непрерывного аргумента. Функция fi(t) определяется набором конечных дискретных значений на всем интервале времени t для любого его момента. Дискретизация функции происходит за счет выбора определенной шкалы квантования по уровню. Реальный физический процесс переводится в непрерывный дискретизированный процесс с заданным шагом квантования по амплитуде. При этом шаг может быть равномерным и неравномерным. Функция fi характеризуется набором дискретных отсчетов. При этом кодирование осуществляется с помощью специальных кодов.

  • Дискретная функция дискретного аргумента. Функция fi(ti) может принимать дискретные значения бесконечного множества и определяется лишь в моменты времени ti. В этом случае осуществляется квантование по времени и квантование по уровню. Физический процесс преобразуется в дискретизированный непрерывный процесс с определенным шагом квантования.

Исходный сигнал, снимаемый с реального объекта, по своей природе имеет непрерывный характер. Для повышения точности измерения он превращается в набор дискретных значений. Как непрерывный, так и дискретный сигналы, далее преобразуются в сообщения. Это начало информационного процесса.

Последующая процедура, связанная с передачей - это обратная преобразование сообщения в сигналы. Мы уже неоднократно упоминали назначение информационных процессов - сбор, подготовка, передача, хранение, накопление, обработка, представление информации.

Информация, переданная в систему ИТ, превращается в данные, а данные отображаются в виде некоторого носителя - сигнала, то есть непрерывная цепь преобразований: материальный объект → сигнал → информация → данные → сигнал.

Сигнал, возникающий как переносчик данных, должен обладать свойствами, соответствующими рассматриваемому информационному процессу. При подготовке данных сигнал, отображающий данные - это символы, соответствующие принятой системе классификации и кодирования.

При передаче в качестве сигнала выступает переносчик. Воздействуя на параметры переносчик (модулируя) можно осуществить передачу данных на требуемое расстояние по выбранному каналу.

При хранении данные отображаются сигналом, фиксируемым в виде состояния физической среды (ячеек памяти) вычислительных средств.

Информационные процессы

Существуют три вида информационных процессов: хранение, передача, обработка.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Хранение информации:

 Носители информации.

 Виды памяти.

 Хранилища информации.

 Основные свойства хранилищ информации.

 

С хранением информации связаны следующие понятия: носи­тель информации (память), внутренняя память, внешняя память, хранилище информации.

Носитель информации – это физическая среда, непосредственно хранящая информацию. Память человека можно назвать опера­тивной памятью. Заученные знания воспроизводятся чело­веком мгновенно. Собственную память мы еще можем назвать внутренней памятью, поскольку ее носитель – мозг – находится внутри нас.

Все прочие виды носителей информации можно назвать вне­шними (по отношению к человеку): дерево, папирус, бумага и т.д. Хранилище информации - это определенным образом организованная информация на внешних носителях, предназначенная для длительного хранения и постоянного использования (например, архивы документов, библиотеки, картотеки). Основной информационной единицей хранилища является определенный физический документ: анкета, книга и др. Под организацией хранилища понимается наличие определенной структуры, т.е. упорядоченность, классификация хранимых документов для удобства работы с ними.

Основные свойства хранилища информации: объем хранимой информации, надежность хранения, время доступа (т.е. время по­иска нужных сведений), наличие защиты информации.

Информацию, хранимую на устройствах компьютерной памя­ти, принято называть данными. Организованные хранилища данных на устройствах внешней памяти компьютера принято называть базами и банками данных.

 

 

 

 

Обработка информации:

             Общая схема процесса обработки информации.

             Постановка задачи обработки.

             Исполнитель обработки.

             Алгоритм обработки.

             Типовые задачи обработки информации.

 

Схема обработки информации:

Исходная информация – исполнитель обработки – итоговая информация.

 

В процессе обработки информации решается некоторая информационная задача, которая предварительно может быть поставлена в традиционной форме: дан некоторый набор исходных данных, требуется получить некоторые результаты. Сам процесс перехода от исходных данных к результату и есть процесс обработки. Объект или субъект, осуществляющий обработку, называют исполнителем обработки.

Для успешного выполнения обработки информации исполнителю (человеку или устройству) должен быть известен алгоритм обработки, т.е. последова­тельность действий, которую нужно выполнить, чтобы достичь нужного результата.

Различают два типа обработки информации. Первый тип обработки: обработка, связанная с получением новой информации, нового содержания знаний (решение математических задач, анализ ситуации и др.). Второй тип обработки: обработка, связанная с изменением фор­мы, но не изменяющая содержания (например, перевод текста с одного языка на другой).

Важным видом обработки информации является кодирование – преобра­зование информации в символьную форму, удобную для ее хра­нения, передачи, обработки. Кодирование активно используется в технических средствах работы с информацией (телеграф, ра­дио, компьютеры). Другой вид обработки информации – структурирование данных (внесение определенного по­рядка в хранилище информации, классификация, каталогизация данных).

Ещё один вид обработки информации – поиск в некотором хранили­ще информации нужных данных, удовлетворяющих определенным условиям поиска (запросу). Алгоритм поиска зависит от способа организации информации.

 

Передача информации:

             Источник и приемник информации.

             Информационные каналы.

             Роль органов чувств в процессе восприятия информации че­ловеком.

             Структура технических систем связи.

             Что такое кодирование и декодирование.

             Понятие шума; приемы защиты от шума.

             Скорость передачи информации и пропускная способность канала.

 

Схема передачи информации:

Источник информации – информационный канал – приемник информации.

 

Информация представляется и передается в форме последовательности сигналов, символов. От источника к приёмнику сообщение передается через некоторую материальную среду. Если в процессе передачи ис­пользуются технические средства связи, то их называют каналами передачи информации (информационными каналами). К ним относятся телефон, радио, ТВ. Органы чувств человека исполняют роль биологических информационных каналов.

Процесс передачи информации по техническим каналам связи проходит по следующей схеме (по Шеннону):

 

 

 

Термином «шум» называют разного рода помехи, искажающие передаваемый сигнал и приводящие к потере информации. Такие помехи, прежде всего, возникают по техническим причинам: пло­хое качество линий связи, незащищенность друг от друга различных потоков информации, передаваемой по одним и тем же ка­налам. Для защиты от шума применяются разные способы, например, применение разного рода фильтров, отделяющих полезный сигнал от шума.

Клодом Шенноном была разработана специальная теория ко­дирования, дающая методы борьбы с шумом. Одна из важных идей этой теории состоит в том, что передаваемый по линии связи код должен быть избыточным. За счет этого потеря какой-то части ин­формации при передаче может быть компенсирована. Однако нельзя делать избыточность слишком большой. Это при­ведёт к задержкам и подорожанию связи.

При обсуждении темы об измерении скорости передачи инфор­мации можно привлечь прием аналогии. Аналог – процесс пере­качки воды по водопроводным трубам. Здесь каналом передачи воды являются трубы. Интенсивность (скорость) этого процесса характеризуется расходом воды, т.е. количеством литров, перекачиваемых за единицу времени. В процессе передачи информации каналами являются техничес­кие линии связи. По аналогии с водопроводом можно говорить об информационном потоке, передаваемом по каналам. Скорость пе­редачи информации – это информационный объем сообщения, передаваемого в единицу времени. Поэтому единицы измерения скорости информационного потока: бит/с, байт/с и др.

Еще одно понятие – пропускная способность информационных каналов – тоже может быть объяснено с помощью «водопроводной» ана­логии. Увеличить расход воды через трубы можно путем увеличения давления. Но этот путь не бесконечен. При слишком большом дав­лении трубу может разорвать. Поэтому предельный расход воды, который можно назвать пропускной способностью водопровода. Аналогичный пре­дел скорости передачи данных имеют и технические линии инфор­мационной связи. Причины этому также носят физический характер.

 

Технические средства реализации информационных процессов.

 

Хранение информации.

Носители информации:

        ОЗУ компьютера (оперативная память)

        Гибкие диски 3,5”

        Оптические диски CD, DVD и др.

        Жёсткие диски

        Переносные запоминающие устройства – flash и др.

Передача информации: источник, приёмник, канал

Обработка информации: компьютер и др.