Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-19.docx
Скачиваний:
71
Добавлен:
15.04.2019
Размер:
3.01 Mб
Скачать

10. Характер распределения температур при теплопередаче через плоскую стенку.

В теплотехнике часто тепловой поток от одной жидкости (или газа) к другой передается через стенку. Такой суммарный процесс теплообмена, в котором теплоотдача соприкосновением является необходимой составной частью, называется теплопередачей.

При теплопередаче через плоскую однослойную стенку (рис. 1.5) процесс сложного теплообмена состоит из трех этапов: теплоотдача от нагретой среды к левой поверхности стенки, теплопроводность через стенку и теплоотдача от правой поверхности стенки к холодной среде.

Тепловой поток в каждом случае передачи теплоты будет записываться следующим образом:

1. Уравнение теплоотдачи от нагретой среды к стенке

2. Уравнение теплопроводности через стенку

3. Уравнение теплоотдачи от стенки к холодной среде

Выразив из этих уравнений температурный напор, .С, и почленно сложив эти уравнения, получим полный температурный напор:

откуда поверхностная плотность теплового потока, Вт/м2, для процесса теплопередачи через однослойную плоскую стенку:

Величина k называется коэффициентом теплопередачи и представляет собой мощность теплового потока, проходящего от более нагретой среды к менее нагретой через 1 м2 поверхности стенки за 1 ч при разнице температур между средами 1°С. Величина, обратная коэффициенту теплопередачи, называется термическим сопротивлением теплопередаче и обозначается R , м2.К/Вт.

При теплопередаче через многослойную стенку с n слоев плотность теплового потока определяется таким же образом. При этом коэффициент теплопередачи и термическое сопротивлении теплопередаче согласно определению:

11. Характер изменения температурных теплоносителей при прямотоке и противотоке теплообменников.

В смесительных теплообменных аппаратах теплопередача осуществляется при непосредственном контакте и смешении горячей и холодной жидкостей.

Характер изменения температур рабочих сред по поверхности рекуперативного теплообменного аппарата зависит от схемы их движения. Наиболее простыми схемами движения являются: прямоток (рис. 5.1, а), противоток (рис. 5.1, б) и перекрестный ток (рис. 5.1, в). Существуют аппараты и с более сложными схемами движения теплоносителя.

а)

б)

в)

Рис. 5.1. Схемы движения рабочих сред

От того, какая схема движения сред применена, во многом зависит эффективность теплообменного аппарата.

Расчет ТА, работающих в стационарном режиме, ведется на основе двух уравнений – теплового баланса и теплопередачи. Уравнение теплового баланса означает равенство количества тепла, отдаваемого горячим теплоносителем (Qгор), сумме количеств тепла, воспринимаемого холодным теплоносителем, (Qхол) и потерь в окружающую среду Qос:

Qгор = Qхол + Qос .

( 5.1 )

Пренебрегая потерями тепла в окружающую среду, имеем Qгор = Qхол = Q или

Q = Gгор ⋅ ⋅ ΔTгор = Gхол ⋅ ⋅ ΔTхол ,

( 5.2 )

здесь Gгор, Gхол – соответственно массовые расходы горячей и холодной воды, кг/с; , – средние изобарные удельные теплоемкости горячей и холодной воды; = = 4187 ; ΔTгор и ΔTхол – изменения температур горячей и холодной воды.

ΔTгор = Тгорвх – Тгорвых;   ΔTхол = Тхолвых - Тхолвх .

Уравнение теплопередачи определяет количество  теплоты Q, передаваемой через заданную поверхность площадью F, если заданы средние температуры греющего и нагреваемого теплоносителей [1]:

Q = К( ) F,

( 5.4 )

 где К – коэффициент теплопередачи от одного теплоносителя к другому, Вт/(м2⋅К).

= (Тгорвх + Тгорвых)/2; = (Тхолвх + Тхолвых)/2 .

Коэффициент теплопередачи К характеризует интенсивность передачи теплоты от одной среды к другой через разделяющую их стенку. Он численно равен количеству теплоты, проходящей через единицу поверхности стенки в единицу времени при разности температур между средами в один градус.

Термодинамическая эффективность теплообменника есть отношение количества теплоты, передаваемой в данном теплообменнике, к количеству теплоты, передаваемой в теплообменнике с бесконечно большой поверхностью теплообмена с теми же параметрами на входе. Эффективность теплообменника определяется по формуле

 

( 5.6 )

Сравнение прямотока с противотоком

Преимущества одной схемы течения теплоносителей перед другой определяются из сравнения количества теплоты, передаваемой при равных условиях, и коэффициентов теплопередачи.

  Во всех случаях при прямотоке передается меньшее количество теплоты, т.е. противоток более экономичен по сравнению с прямотоком.

Экспериментальная установка

 Установка (рис. 5.2) представляет собой поверхностный теплообменник 1, выполненный из двух труб, размещенных одна внутри другой. По внутренней трубе протекает горячая вода (греющий теплоноситель), по наружной – холодная (нагреваемый теплоноситель).

 

Рис. 5.2. Схема экспериментальной установки

Для определения температур горячей воды на входе и выходе из теплообменника установлены термопары 2, 3; холодной воды – термометры 4 и 5. Холодные спаи термопар должны быть помещены в сосуд Дьюара 6, температура которого измеряется ртутным термометром. ЭДС термопар регистрируется цифровым вольтметром 7, подключенным через переключатель термопар 8.

Расход горячего теплоносителя, протекающего через теплообменник, измеряется с помощью ротаметра 9. Регулирование расхода теплоносителей осуществляется вентилями 10 и 11. Переключение схемы с прямоточной на противоточную производится с помощью вентиля 12.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]