Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
023390.doc
Скачиваний:
8
Добавлен:
14.04.2019
Размер:
562.18 Кб
Скачать

5.8. Элементарные частицы

К физике атомного ядра тесно прилегает физика элементарных частиц. Эта область современной науки базируется на квантовых представлениях и в своем развитии всё дальше проникает в глубину материи, открывая загадочный мир ее первооснов. В физике элементарных частиц чрезвычайно велика роль теории. В силу невозможности прямого наблюдения таких материальных объектов их образы ассоциируются с математическими уравнениями, с наложенными на них запрещающими и разрешающими правилами.

По определению элементарные частицы – это первичные, неразложимые образования, из которых, по предположению, состоит вся материя. На самом же деле этот термин употребляется в более широком смысле – для обозначения обширной группы микрочастиц материи, структурно не объединенных в ядра и атомы. Большинство объектов исследования физики элементарных частиц не отвечают строгому определению элементарности, поскольку представляют собой составные системы. Поэтому частицы, удовлетворяющие этому требованию, принято называть истинно элементарными.

Первой элементарной частицей, открытой в процессе изучения микромира еще в конце XIX в., был электрон. Следующим был открыт протон (1919), затем пришла очередь нейтрона, открытого в 1932 г. Существование позитрона теоретически было предсказано П. Дираком в 1931 г., и в 1932 г. этот положительно заряженный «двойник» электрона был обнаружен в космических лучах Карлом Андерсоном. Предположение о существовании в природе нейтрино было выдвинуто В. Паули в 1930 г., а экспериментально оно было обнаружено только в 1953 г. В составе космических лучей в 1936 г. были найдены мю-мезоны (мюоны) – частицы обоих знаков электрического заряда с массой около 200 масс электрона. Во всем остальном свойства мюонов очень близки к свойствам электрона и позитрона. Также в космических лучах в 1947 г. были открыты положительный и отрицательный пи-мезоны, существование которых было предсказано японским физиком Хидэки Юкавой в 1935 г. В дальнейшем выяснилось, что существует также нейтральный пи-мезон.

В начале 50-х гг. была открыта большая группа частиц с весьма необычными свойствами, что побудило назвать их «странными». Первые частицы этой группы были обнаружены в космических лучах, это К-мезоны обоих знаков и L-гиперон (лямбда-гиперон). Отметим, что мезоны получили свое название от греч. «средний, промежуточный» в силу того, что массы первых открытых частиц этого типа (пи-мезоны, мю-мезоны) имеют массу, промежуточную между массой нуклона и электрона. Гипероны же ведут свое название от греч. «сверх, выше», поскольку их массы превышают массу нуклона. Последующие открытия странных частиц делались уже на ускорителях заряженных частиц, которые стали основным инструментом изучения элементарных частиц.

Так были открыты антипротон, антинейтрон и ряд гиперонов. В 60-е гг. было обнаружено значительное число частиц с крайне малым временем жизни, которые получили название резонансов. Как выяснилось, к резонансам относится большинство известных элементарных частиц. В середине 70-х гг. было открыто новое семейство элементарных частиц, получивших романтическое название «очарованных», а в начале 80-х – семейства «красивых» частиц и так называемых промежуточных векторных бозонов. Открытие этих частиц явилось блестящим подтверждением теории, основанной на кварковой модели элементарных частиц, которая предсказала существование новых частиц задолго до их обнаружения.

Таким образом, за время после открытия первой элементарной частицы – электрона – в природе выявлено множество (около 400) микрочастиц материи, и процесс открытия новых частиц продолжается. Оказалось, что мир элементарных частиц устроен весьма и весьма сложно, а их свойства разнообразны и зачастую крайне неожиданны.

Все элементарные частицы являются материальными образованиями чрезвычайно малых масс и размеров. Большинство из них имеют массы порядка массы протона (~10–24 г) и размеры порядка 10–13 м. Это определяет сугубо квантовую специфику их поведения. Важное квантовое свойство всех элементарных частиц (включая и относящийся к ним фотон) состоит в том, что все процессы с ними происходят в виде последовательности актов их испускания и поглощения (способность рождаться и уничтожаться при взаимодействии с другими частицами). Процессы с участием элементарных частиц относятся ко всем четырем видам фундаментального взаимодействия: сильному, электромагнитному, слабому и гравитационному. Сильным взаимодействием обусловлена связь нуклонов в атомном ядре. Электромагнитное взаимодействие обеспечивает связь электронов с ядрами в атоме, а также связь атомов в молекулах. Слабое взаимодействие вызывает, в частности, распад квазистабильных (т. е. относительно долгоживущих) частиц, имеющих время жизни в пределах 10–12 ÷ 10–14 с. Гравитационное взаимодействие на характерных для элементарных частиц расстояниях ~10–13 см, в силу малости их массы, имеет крайне малую интенсивность, однако может оказаться существенным на сверхмалых расстояниях. Интенсивности взаимодействий: сильного, электромагнитного, слабого и гравитационного – при умеренной энергии процессов относятся соответственно как 1 : 10–2 : 10–10 : 10–38. Вообще же с ростом энергии частиц это соотношение изменяется.

Элементарные частицы классифицируют по различным признакам, и надо сказать, что в целом принятая их классификация достаточно сложна.

В зависимости от участия в различных видах взаимодействия все известные частицы делят на две основные группы: адроны и лептоны.

Адроны участвуют во всех видах взаимодействия, включая сильное. Они получили свое название от греч. «большой, сильный».

Лептоны не участвуют в сильном взаимодействии. Их название происходит от греч. «легкий, тонкий», поскольку массы известных до середины 70-х гг. частиц этого класса были заметно меньше масс всех других частиц (кроме фотона).

К адронам относятся все барионы (группа частиц с массой не меньше массы протона, названных так от греч. «тяжелый») и мезоны. Самым легким барионом является протон.

Лептонами являются, в частности, электрон и позитрон, мюоны обоих знаков, нейтрино трех видов (легкие, электрически нейтральные частицы, участвующие только в слабом и гравитационном взаимодействиях). Предполагается, что нейтрино столь же распространены в природе, как и фотоны, к их образованию приводит множество различных процессов. Отличительной особенностью нейтрино является его огромная проникающая способность, особенно при низких энергиях. Завершая классификацию по видам взаимодействия, следует отметить, что фотон принимает участие только в электромагнитном и гравитационном взаимодействиях. Кроме того, в соответствии с теоретическими моделями, направленными на объединение всех четырех видов взаимодействия, существует гипотетическая частица, переносящая гравитационное поле, которая получила название гравитон. Особенность гравитона состоит в том, что он (согласно теории) участвует только в гравитационном взаимодействии. Заметим, что теория связывает с квантовыми процессами гравитационного взаимодействия еще две гипотетические частицы – гравитино и гравифотон. Экспериментальное обнаружение гравитонов, т. е., по сути, гравитационного излучения, крайне затруднено из-за его чрезвычайно слабого взаимодействия с веществом.

В зависимости от времени жизни элементарные частицы разделяют на стабильные, квазистабильные и нестабильные (резонансы).

Стабильными частицами являются электрон (его время жизни τ > 1021 лет), протон (τ > 1031 лет), нейтрино и фотон. Квазистабильными считаются частицы, распадающиеся за счет электромагнитного и слабого взаимодействий, их время жизни τ > 10–20 c. Резонансы – частицы, распадающиеся в результате сильного взаимодействия, их время жизни находится в интервале 10 – 22 ÷10 – 24 с.

Распространенным является еще один вид подразделения элементарных частиц. Системы частиц с нулевым и целым спином подчиняются статистике БозеЭйнштейна, поэтому такие частицы принято называть бозонами. Совокупность же частиц с полуцелым спином описывается статистикой ФермиДирака, отсюда и название таких частиц – фермионы.

Каждая элементарная частица характеризуется определенным набором дискретных физических величин – квантовых чисел. Общими для всех частиц характеристиками являются масса m, время жизни τ, спин J и электрический заряд Q. Спин элементарных частиц принимает значения, равные целым или полуцелым кратным постоянной Планка. Электрические заряды частиц являются целыми кратными величине заряда электрона, считающегося элементарным электрическим зарядом.

Кроме того, элементарные частицы дополнительно характеризуются так называемыми внутренними квантовыми числами. Лептонам приписывается специфический лептонный заряд L = ±1, адроны с полуцелым спином несут барионный заряд В = ±1 (адроны с В = 0 образуют подгруппу мезонов).

Важной квантовой характеристикой адронов является внутренняя четность Р, принимающая значение ±1 и отражающая свойство симметрии волновой функции частицы относительно пространственной инверсии (зеркального отображения). Несмотря на несохранение четности при слабом взаимодействии, частицы с хорошей точностью принимают значения внутренней четности, равные либо +1, либо – 1.

!!Адроны, кроме того, подразделяются на обычные частицы (протон, нейтрон, пи-мезоны), странные частицы (К-мезоны, гипероны, некоторые резонансы), «очарованные» и «красивые» частицы. Им соответствуют особые квантовые числа: странность S, очарование С и красота b. Эти квантовые числа введены в соответствии с кварковой моделью для истолкования специфических процессов, характерных для этих частиц.

Среди адронов имеются группы (семейства) частиц с близкими массами, одинаковыми внутренними квантовыми числами, но различающиеся электрическим зарядом. Такие группы называются изотопическими мультиплетами и характеризуются общим квантовым числом – изотопическим спином, принимающим, как и обычный спин, целые и полуцелые значения.

В чем состоит уже неоднократно упоминавшаяся кварковая модель адронов?

Обнаружение закономерности группировки адронов в мультиплеты послужило основанием для предположения о существовании особых структурных образований, из которых построены адроны, – кварков. Допуская существование таких частиц, можно считать, что все адроны являются комбинациями кварков. Эта смелая и эвристически продуктивная гипотеза была выдвинута в 1964 г. американским физиком Марри Гелл-Маном. Суть ее состояла в предположении о наличии трех фундаментальных частиц с полуцелым спином, являющихся материалом для построения адронов: u-, d- и s-кварков. В дальнейшем на основе новых экспериментальных данных кварковая модель строения адронов пополнилась еще двумя кварками: «очарованным» (с) и «красивым» (b). Считается возможным существование и других типов кварков. Отличительная особенность кварков состоит в том, что они обладают дробными значениями электрического и барионного зарядов, не встречающимися ни у одной из известных частиц. С кварковой моделью согласуются все экспериментальные результаты по изучению элементарных частиц.

Согласно кварковой модели, барионы состоят из трех кварков, мезоны – из кварка и антикварка. Поскольку некоторые барионы являются комбинацией трех кварков в одном и том же состоянии, что запрещено принципом Паули (см. выше), каждому типу («аромату») кварка было приписано дополнительное внутреннее квантовое число «цвет». Кварк каждого типа («аромата» – u, d, s, c, b) может находиться в трех «цветовых» состояниях. В связи с использованием цветовых понятий теория сильного взаимодействия кварков получила название квантовой хромодинамики (от греч. «цвет»).

Можно считать, что кварки являются новыми элементарными частицами, причем они претендуют на роль истинно элементарных частиц для адронной формы материи. Однако остается неразрешенной проблема наблюдения свободных кварков и глюонов. Несмотря на систематические поиски в космических лучах, на ускорителях высокой энергии, обнаружить их в свободном состоянии пока так и не удалось. Имеются веские основания считать, что здесь физика столкнулась с особым явлением природы – так называемым удержанием кварков.

Дело в том, что существуют серьезные теоретические и экспериментальные доводы в пользу предположения о том, что силы взаимодействия кварков с расстоянием не ослабевают. Это означает, что для разделения кварков требуется бесконечно большая энергия, следовательно, появление кварков в свободном состоянии невозможно. Это обстоятельство придает кваркам статус совершенно особых структурных единиц вещества. Возможно, именно начиная с кварков принципиально невозможно опытное наблюдение ступеней дробления материи. Признание кварков в качестве реально существующих объектов материального мира не только олицетворяет собой яркий случай первичности идеи по отношению к существованию материальной сущности. Встает вопрос о пересмотре таблицы фундаментальных мировых постоянных, ибо заряд кварка втрое меньше заряда протона, а следовательно, и электрона.

Начиная с открытия позитрона наука встретилась с частицами антивещества. Сегодня очевидным является то, что для всех элементарных частиц с ненулевыми значениями хотя бы одного из квантовых чисел, таких как электрический заряд Q, лептонный заряд L, барионный заряд В, странность S, очарование С и красота b, существуют античастицы с теми же значениями массы, времени жизни, спина, но с противоположными знаками вышеуказанных квантовых чисел. Известны частицы, тождественные своим античастицам, они называются истинно нейтральными. Примерами истинно нейтральных частиц служат фотон и один из трех пи-мезонов (два других являются по отношению друг к другу частицей и античастицей).

Характерной особенностью взаимодействия частиц и античастиц является их аннигиляция при столкновении, т. е. взаимоуничтожение с образованием других частиц и выполнением законов сохранения энергии, импульса, заряда и т. п. Типичным примером аннигиляции пары является процесс превращения электрона и его античастицы – позитрона – в электромагнитное излучение (в фотоны или гамма-кванты). Аннигиляция пар происходит не только при электромагнитном взаимодействии, но и при сильном взаимодействии. При высоких энергиях легкие частицы могут аннигилировать с образованием более тяжелых частиц – при условии, что полная энергия аннигилирующих частиц превышает порог рождения тяжелых частиц (равный сумме их энергий покоя).

При сильном и электромагнитном взаимодействиях имеет место полная симметрия между частицами и их античастицами, т. е. все процессы, происходящие между первыми, возможны и для вторых. Поэтому антипротоны и антинейтроны могут образовывать ядра атомов антивещества, т. е. из античастиц в принципе вполне может быть построено антивещество. Возникает очевидный вопрос: если каждая частица имеет античастицу, то почему же в изученной области Вселенной отсутствуют скопления антивещества? Действительно, о наличии их во Вселенной, даже где-то «вблизи» Вселенной, можно было бы судить по мощному аннигиляционному излучению, приходящему к Земле из области соприкосновения вещества и антивещества. Однако современная астрофизика не располагает данными, которые позволили бы хотя бы предположить наличие во Вселенной областей, заполненных антивеществом.

Как же произошел во Вселенной выбор в пользу вещества и в ущерб антивеществу, хотя законы симметрии в основном выполняются? Причиной этого феномена, скорее всего, стало именно нарушение симметрии, т. е. флуктуация на уровне основ материи.

Ясно одно: если бы такой флуктуации не возникло, участь Вселенной была бы печальной – вся ее материя существовала бы в виде бесконечного облака фотонов, появившихся в результате аннигиляции частиц вещества и антивещества.

Небесная механика — раздел астрономии, применяющий законы механики для изучения движения небесных тел. Небесная механика занимается предвычислением положения Луны и планет, предсказанием места и времени затмений, в общем, определением реального движения космических тел.

Естественно, что небесная механика в первую очередь изучает поведение тел Солнечной системы — обращение планет вокруг Солнца, спутников вокруг планет, движение комет и других малых небесных тел. Тогда как перемещение далеких звёзд удается заметить, в лучшем случае, за десятилетия и века, движение членов Солнечной системы происходит буквально на глазах — за дни, часы и даже минуты. Поэтому его изучение стало началом современной небесной механики, рождённой трудами И. Кеплера (1571—1630) и И. Ньютона (1643—1727). Кеплер впервые установил законы планетного движения, а Ньютон вывел из законов Кеплера закон всемирного тяготения и использовал законы движения и тяготения для решения небесно-механических проблем, не охваченных законами Кеплера. После Ньютона прогресс в небесной механике в основном заключался в развитии математической техники для решения уравнений, выражающих законы Ньютона. Таким образом, принципы небесной механики — это «классика» в том смысле, что и сегодня они такие же, как во времена Ньютона. Применение результатов небесной механики к движению искусственных спутников и космических кораблей составляет астродинамику.

Начала термодинамики — совокупность постулатов, лежащих в основе термодинамики. Эти положения были установлены в результате научных исследований и были доказаны экспериментально. В качестве постулатов они принимаются для того, чтобы термодинамику можно было построить аксиоматически.

Необходимость начал термодинамики связана с тем, что термодинамика описывает макроскопические параметры систем без конкретных предположений относительно их микроскопического устройства. Вопросами внутреннего устройства занимается статистическая физика.

Начала термодинамики независимы, то есть ни одно из них не может быть выведено из других начал.

Первое начало термодинамики представляет собой закон сохранения энергии в применении к термодинамическим системам. Первое начало термодинамики было сформулировано в середине XIX века в результате работ немецкого учёного Ю. Р. Майера, английского физика Дж. П. Джоуля и немецкого физика Г. Гельмгольца. Согласно первому началу термодинамики, термодинамическая система может совершать работу только за счёт своей внутренней энергии или каких-либо внешних источников энергии. Первое начало термодинамики часто формулируют как невозможность существования вечного двигателя первого рода, который совершал бы работу, не черпая энергию из какого-либо источника.

В любой изолированной системе запас энергии остаётся постоянным. Это — формулировка Дж. П. Джоуля (1842 г.).

Количество теплоты, полученное системой, идёт на изменение её внутренней энергии и совершение работы против внешних сил

Изменение внутренней энергии системы при переходе её из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе, то есть, оно зависит только от начального и конечного состояния системы и не зависит от способа, которым осуществляется этот переход. Это определение особенно важно для химической термодинамики (ввиду сложности рассматриваемых процессов). Иными словами, внутренняя энергия является функцией состояния. В циклическом процессе внутренняя энергия не изменяется.

Изменение полной энергии системы в квазистатическом процессе равно количеству теплоты Q, сообщённому системе, в сумме с изменением энергии, связанной с количеством вещества N при химическом потенциале μ, и работы A'[3], совершённой над системой внешними силами и полями, за вычетом работы A, совершённой самой системой против внешних сил

ΔU = Q − A + μΔN + A'.

Для элементарного количества теплоты δQ, элементарной работы δA и малого приращения dU внутренней энергии первый закон термодинамики имеет вид:

dU = δQ − δA + μdN + δA'.

Разделение работы на две части, одна из которых описывает работу, совершённую над системой, а вторая — работу, совершённую самой системой, подчёркивает, что эти работы могут быть совершены силами разной природы вследствие разных источников сил.

Второе начало термодинамики накладывает ограничения на направление термодинамических процессов, запрещая самопроизвольную передачу тепла от менее нагретых тел к более нагретым. Также формулируется как закон возрастания энтропии. Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая что коэффициент полезного действия не может равняться единице, поскольку для кругового процесса температура холодильника не должна равняться 0.

Для любой квазиравновесной термодинамической системы существует однозначная функция термодинамического состояния S = S(T,x,N), называемая энтропией, такая, что ее полный дифференциал dS = δQ / T.

В состоянии с максимальной энтропией макроскопические необратимые процессы (а процесс передачи тепла всегда является необратимым из-за постулата Клаузиуса) невозможны.

Третье начало термодинамики говорит о том, как энтропия ведет себя вблизи абсолютного нуля температур. «Приращение энтропии при абсолютном нуле температуры стремится к конечному пределу, не зависящему от того, в каком равновесном состоянии находится система».

Третье начало термодинамики относится только к равновесным состояниям.

Поскольку на основе второго начала термодинамики энтропию можно определить только с точностью до произвольной аддитивной постоянной (то есть, определяется не сама энтропия, а только её изменение)

третье начало термодинамики может быть использовано для точного определения энтропии. При этом энтропию равновесной системы при абсолютном нуле температуры считают равной нулю.

Третье начало термодинамики позволяет находить абсолютное значение энтропии, что нельзя сделать в рамках классической термодинамики (на основе первого и второго начал термодинамики). В классической термодинамике энтропия может быть определена лишь с точностью до произвольной аддитивной постоянной S0, что не мешает термодинамическим исследованиям, так как реально измеряется разность энтропий (S0) в различных состояниях. Согласно третьему началу термодинамики, при значение .

В 1911 году Макс Планк сформулировал третье начало термодинамики, как условие обращения в нуль энтропии всех тел при стремлении температуры к абсолютному нулю: . Отсюда S0 = 0, что даёт возможность определять абсолютное значения энтропии и других термодинамических потенциалов. Формулировка Планка соответствует определению энтропии в статистической физике через термодинамическую вероятность (W) состояния системы S = kln W. При абсолютном нуле температуры система находится в основном квантово-механическом состоянии. Если оно невырожденно, то W = 1 (состояние реализуется единственным микрораспределением) и энтропия S при равна нулю. В действительности при всех измерениях стремление энтропии к нулю начинает проявляться значительно раньше, чем могут стать существенными дискретность квантовых уровней макроскопической системы и влияние квантового вырождения.

Нулевым (или общим) началом термодинамики иногда называют принцип, согласно которому замкнутая система независимо от начального состояния в конце концов приходит к состоянию термодинамического равновесия и самостоятельно выйти из него не может.

Законы Кеплера

Чтобы изучать движение небесных тел, познакомимся с силой гравитации. Лучше всего это сделать на примере взаимного движения двух тел: компонентов двойной звезды или Земли вокруг Солнца (для простоты предполагая, что другие планеты отсутствуют). К таким системам применимы законы Кеплера. В основе их лежит тот факт, что оба взаимодействующих тела движутся в одной плоскости. Это означает, что и сила гравитации всегда лежит в той же плоскости.

Закон эллипсов. Первый закон Кеплера утверждает, что планеты Солнечной системы движутся по эллипсам, в одном из фокусов которого находится Солнце. Фактически этот закон справедлив только для системы из двух тел, например для двойной звезды. Но и в Солнечной системе он выполняется довольно точно, поскольку на движение каждой планеты в основном влияет массивное Солнце, а все остальные тела влияют несравненно слабее.

Закон площадей. Если отмечать не только положение планеты, но и время, то можно узнать не только форму орбиты, но и характер движения планеты по ней. Оно подчиняется второму закону Кеплера, утверждающему, что линия, соединяющая Солнце и планету (или компоненты двойной звезды), за равные интервалы времени «заметает» равные площади. Например, эта линия между Солнцем и Землей каждые сутки заметает 2×1014 квадратных километров. Из закона площадей следует, что Солнце притягивает планету строго по прямой, соединяющей их центры. Верно и обратное: для любой центральной силы справедлив второй закон Кеплера…

Согласно молекулярно-кинетическим представлениям любое тело ( твердое, жидкое или газообразное) состоит из мельчайших обособленных частиц, называемых молекулами. Эти частицы находятся в беспорядочном, хаотическом движении, интенсивность которого зависит от температуры тела. Такое движение молекул называется тепловым.

Развитые выше молекулярно-кинетические представления и полученные на их основе уравнения позволяют найти те соотношения, которые связывают между собой величины, определяющие состояние газа. Этими величинами являются: давление р, под которым находится газ, его температура Т и объем V, занимаемый определенной массой газа. Их называют параметрами состояния.

Развитые выше молекулярно-кинетические представления и полученные на их основе уравнения позволяют найти те соотноше: ния, которые связывают между собой величины, определяющие состояние газа. Этими величинами являются: давление р, под которым находится газ, его температура Т и объем У, занимаемый определенной массой газа. Их называют параметрами состояния.

Изложены термодинамические и молекулярно-кинетические представления об адгезии полимеров. Рассмотрено влияние химической природы и строения полимеров на закономерности образования адгезионных соединений. Отдельный раздел посвящен важной проблеме повышения адгезионной способности полимерных адгезивов и субстратов.

На базе молекулярно-кинетических представлений выполнен расчет свободной энергии кристалла. Исследованы уравнения равновесия, определяющие атомный и спиновый порядки в зависимости от температуры, состава кристалла, энергетических констант, а также взаимную зависимость спинового и атомного упорядочений. Оценены критические температуры атомного и спинового упорядочений, установлена их концентрационная зависимость, а также зависимость критической температуры спинового упорядочения от степени дальнего атомного порядка. Последняя оказалась дробно-рациональной функцией с числителем - полиномом четвертой степени и знаменателем - квадратичной функцией по параметру дальнего атомного порядка.

В свете молекулярно-кинетических представлений процесс течения структурированных жидкостей, в отличие от ньютоновских, состоит из нескольких элементарных актов.

С этого времени молекулярно-кинетические представления начинают интенсивно проникать в учение о химических процессах. Так, в 1877 г. Я. Г. Вант-Гофф на основании этой теории предложил аналитическое выражение закона действующих масс, обработав данные Бертло и Пеан де Сен Жиля, а через два года Гульдберг и Вааге осуществили динамический вывод закона действующих масс для прямой реакции.

В настоящее время молекулярно-кинетические представления широко используются при изучении всех естественных наук.

В настоящее время молекулярно-кинетические представления широко используются при изучении всех естественных наук.

Пока еще отсутствуют более точные молекулярно-кинетические представления о растворенных веществах, которые можно было бы трактовать с позиций квантовой теории.

С точки зрения молекулярно-кинетических представлений можно было бы ожидать, что энтропия термодинамической системы достигнет своего максимума, если эта система при бесконечно больших объеме и температуре будет содержать одну-единственную молекулу.

С точки зрения молекулярно-кинетических представлений при абсолютном нуле температуры все тела имеют структуру вполне идеальных кристаллов без трещин и дислокаций. Абсолютную величину этой константы определить не удается. В связи с этим как основа для расчета количественного выражения энтропии систем принимается положение, внесенное в термодинамику В. Этот постулат и лежит в основе третьего закона термодинамики, часто называемого также тепловой теоремой Нернста.

Я - Самойлов обосновал молекулярно-кинетическое представление о гидратации ионов. Явление гидратации трактуется им не как прочное связывание числа молекул воды, а как действие ионов на тепловое ближайших к ним молекул раствора.

Итак, последовательное привлечение молекулярно-кинетических представлений к анализу явления адгезии создает единую и физически непротиворечивую основу для учета влияния на закономерности образования адгезионных соединений как химической природы и строения полимеров, так и условий их контактирования.

Бернулли, исходя из молекулярно-кинетических представлений, дал простой качественный вывод закона Бойля - Мариотта.

Обращаясь к истории развития молекулярно-кинетических представлений, следует прежде всего отметить, что представления об атомистическом строении вещества были высказаны еще древними греками.

Вывод закона Фурье из молекулярно-кинетических представлений. Потоком тепла ( или тепловой энергии) в данной точке называется количество тепла, переносимое в единицу времени через единичную поверхность, помещенную в данную точку вещества ( ср. [9]

В этот курс были включены молекулярно-кинетические представления о состоянии вещества, что придавало термодинамике большую наглядность и убедительность.

В работе на основе молекулярно-кинетических представлений о структуре водных растворов ПАВ делается предположение о проникновении в трещины горных пород не молекул ПАВ, а мономерных ( свободных) молекул воды, обладающих повышенной подвижностью и шаровой симметрией.

Именно оптические методы исследования коллоидов позволили экспериментально проверить молекулярно-кинетические представления. Лишь после появления ультрамикроскопа молекулярно-кинетическая гипотеза превратилась в теорию, и реальность существования молекул была окончательно доказана.

Изучая седиментацию суспензии гуммигута, Перрен на основе молекулярно-кинетических представлений определил ( 1908 - 1910) число Авогад-ро Nh. При этом были получены значения N, близкие к полученным другими методами; это явилось блестящим подтверждением универсальности молекуляр-но-кинетической теории и ее применимости к коллоидным растворам.

ТЕРМИНОЛОГИЧЕСКИЙ СЛОВАРЬ

Адроны (от греч. αδpos – большой, сильный) – класс элементарных частиц, участвующих в сильном взаимодействии. К адронам относятся все барионы и мезоны, включая резонансы.

Алгоритм (от лат. algorithmi – транслитерации имени среднеазиатского ученого аль-Хорезми, оказавшего большое влияние на развитие математики в Европе) – конечный набор правил, позволяющих чисто механически решать любую конкретную задачу из некоторого класса однотипных задач.

Анализ (от лат. analysis – разложение, расчленение) – метод научного исследования, состоящий в мысленном или фактическом разложении целого на составные части (элементы); часто используется как синоним научного исследования вообще; анализ неразрывно связан с синтезом (соединение элементов в единое целое).

Аннигиляция (от позднелат. annihilatio – исчезновение, превращение в ничто) – один из видов взаимопревращений элементарных частиц, происходящий при столкновении частицы с античастицей; при аннигиляции материя не исчезает, а превращается из одной формы в другую, например при аннигиляции электрона и позитрона возникают кванты электромагнитного излучения.

Античастицы (от греч. αυτι – против) – элементарные частицы, имеющие ту же массу, спин, время жизни и другие внутренние характеристики, что и их «двойники», но отличающиеся от них знаком некоторых характеристик взаимодействия (например, электрического заряда, магнитного момента).

Атом (от греч. αтομοs – неделимый) – мельчайшая частица химического элемента, сохраняющая его свойства; состоит из тяжелого ядра, обладающего положительным электрическим зарядом, и окружающих его легких частиц – электронов с отрицательными электрическими зарядами, образующих электронные оболочки атома.

Барионы (от греч. βαρυς – тяжелый) – группа «тяжелых» элементарных частиц с полуцелым спином и массой, не меньшей массы протона; участвуют во всех известных фундаментальных взаимодействиях. К барионам относятся нуклоны (протон и нейтрон), гипероны, а также многие резонансы и «очарованные» частицы.

Близкодействие – представление, согласно которому взаимодействие между удаленными друг от друга телами осуществляется через промежуточную среду или промежуточные звенья, передающие взаимодействие от точки к точке с конечной скоростью.

Верификация (от лат. verus – истинный и facio – делаю) – проверка, эмпирическое подтверждение теоретических положений науки путем сопоставления их с наблюдаемыми объектами, данными экспериментов.

Волновая функция – в квантовой механике величина, полностью описывающая состояние микрообъекта и вообще любой квантовой системы. Квадрат волновой функции дает значение вероятностей тех величин, от которых зависит сама волновая функция. Волновую функцию называют также амплитудой вероятности.

Гипотеза (от греч. υποθεσις – основание) – научное предположение, выдвигаемое для объяснения какого-либо явления и требующее проверки на опыте и теоретического обоснования для того, чтобы стать достоверной научной теорией.

Дальнодействие – представление, согласно которому действие тел друг на друга передается мгновенно через пустоту на сколь угодно большие расстояния; открытие электромагнитного поля показало, что концепция дальнодействия неверна.

Детерминизм (от лат. determino – определять) – философское учение об объективной закономерной взаимосвязи и причинной обусловленности всех явлений.

Дискретность (от лат. discretus – разделенный) – прерывность; противопоставляется непрерывности, вместе с ней составляет категории, характеризующие строение материи и процесс ее развития.

Дифракция (от лат. diffractus – разломанный) – отклонение волн, возникающее при их распространении в неоднородных средах, огибание ими препятствий.

Инвариантность (от лат. invariantis – неизменяющийся) – неизменность какой-либо величины при изменении физических условий или по отношению к некоторым преобразованиям, обычно преобразованиям координат и времени.

Интеграция (от лат. integratio – восстановление) – процесс сближения и связи наук, происходящий наряду с процессами их дифференциации; вообще – понятие, означающее состояние связанности отдельных частей системы в целое, а также процесс, ведущий к такому состоянию.

Интерференция волн – явление, наблюдающееся при одновременном распространении в пространстве двух или нескольких волн, когда при их сложении в разных точках пространства происходит усиление или ослабление результирующей волны. Интерференция характерна для волн любой природы.

Квант – понятие, введенное М. Планком для обозначения элементарной дискретной порции энергии.

Кварки – гипотетические материальные частицы, из которых, по современным представлениям, состоят все адроны. В наиболее распространенном варианте теории постулируется существование четырех кварков (и соответствующих антикварков), каждый из которых может находиться в трех состояниях, различающихся квантовым числом – «цветом».

Концепция (от лат. conceptio – система) – определенный способ понимания, трактовки каких-либо явлений, основная точка зрения, руководящая идея для их освещения; ведущий замысел, конструктивный принцип различных видов интеллектуальной деятельности.

Корпускулярно-волновой дуализм – положение о том, что любые микрообъекты материи (фотоны, электроны, протоны и др.) обладают свойствами и частиц (корпускул), и волн.

Лептоны (от греч. λεπτος – легкий) – элементарные частицы с полуцелым спином, не участвующие в сильном взаимодействии. К лептонам относятся электрон, мюон, нейтрино и другие частицы.

Мезоны (от греч. μεσος – средний, промежуточный) – нестабильные элементарные частицы с нулевым или целым спином, принадлежащие к классу адронов и не имеющие барионного заряда; являются переносчиками ядерных сил.

Нейтрино (итал. neutrino – уменьшительное от «нейтрон») – стабильная, незаряженная элементарная частица с полуцелым спином и, предположительно, нулевой массой; относится к лептонам, участвует только в слабом и гравитационном взаимодействии.

Нейтрон (англ. neutron, от лат. neuter – ни тот, ни другой) – электрически нейтральная элементарная частица с полуцелым спином и массой, незначительно превышающей массу протона; относится к классу адронов и входит в группу барионов. Из нейтронов и протонов построены все атомные ядра.

Неопределенности принцип – фундаментальное положение квантовой теории, утверждающее, что любая физическая система не может находиться в состояниях, в которых координаты ее центра инерции и импульс одновременно принимают вполне определенные значения.

Нуклон (от лат. nucleus – ядро) – общее название протона и нейтрона, являющихся составными частями атомных ядер.

Парадигма (от греч. παραδειγμα – образец) – исходная концептуальная модель постановки проблем и их решения, методов исследования, господствующих в течение определенного исторического периода в научном соообществе.

Позитрон (от лат. positivus – положительный) – элементарная частица с положительным электрическим зарядом, античастица по отношению к электрону.

Постулат (от лат. postulatum – требование) – утверждение, принимаемое в рамках какой-либо научной теории за истинное, хотя и не доказуемое ее средствами, и поэтому играющее в ней роль аксиомы.

Протон (от греч. πρωτος – первый) – стабильная элементарная частица с полуцелым спином и массой в 1836 электронных масс.

Соответствия принцип – сформулированный Н. Бором принцип взаимоотношений последовательно меняющих друг друга теорий, заключающийся в том, что всякая новая теория не отвергает полностью предшествующую, а включает ее в себя в качестве частного случая.

Спин (от англ. spin – вращение) – собственный момент импульса (количества движения) микрочастицы, имещий квантовую природу и не связанный с перемещением частицы как целого; измеряется в единицах постоянной Планка.

Фальсификации принцип (от лат. falsifico – подделывать) – принцип разграничения научного и ненаучного знания, состоящий в том, что критерием научности теории является ее фальсифицируемость, т. е. опровержимость.

Фотон (от греч. φωτος – свет) – квант электромагнитного поля, нейтральная элементарная частица с нулевой массой и единичным спином.

Флуктуации (от лат. fluctuatio – колебание) – случайные отклонения от средних значений наблюдаемых величин, характеризующих систему из большого числа частиц; имеют место для любых случайных процессов.

Эволюция (от лат. evolutio – развертывание) – представление об изменениях в природе и обществе, их направленности, порядке и закономерностях.

Электрон – первая элементарная частица, открытая в физике, материальный носитель наименьшей массы и наименьшего электрического заряда в природе.

Элементарные частицы

Энтропия (от греч. εν + τροπη – превращение) – функция состояния термодинамической системы. Неравновесные процессы в изолированной системе сопровождаются ростом энтропии. Понятие энтропии широко используется в физике, химии, биологии, теории информации.

Ядро атомное – центральная массивная часть атома, состоящая из нуклонов (протонов и нейтронов), связанных ядерными силами.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]