Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
421474_A713D_shpory_po_vysshey_matematike.docx
Скачиваний:
3
Добавлен:
24.12.2018
Размер:
1.06 Mб
Скачать

29 Вопрос

В математическом анализе, частная производная — одно из обобщений понятия производной на случай функции нескольких переменных.

В явном виде частная производная функции f определяется следующим образом:

График функции z = x² + xy + y². Частная производная в точке (1, 1, 3) при постоянном y соответствует углу наклона касательной прямой, параллельной плоскости xz

Сечения графика, изображенного выше, плоскостью y = 1

Следует обратить внимание, что обозначение  следует понимать как цельный символ, в отличие от обычной производной функции одной переменной , которую можно представить, как отношение дифференциалов функции и аргумента. Однако, и частную производную можно представить как отношение дифференциалов, но в этом случае необходимо обязательно указывать, по какой переменной осуществляется приращение функции: , где dxf — частный дифференциал функции f по переменной x. Часто непонимание факта цельности символа  является причиной ошибок и недоразумений, как, например, сокращение  в выражении . (подробнее см. Фихтенгольц, «Курс дифференциального и интегрального исчисления»).

Геометрически, частная производная является производной по направлению одной из координатных осей. Частная производная функции f в точке  по координате xk равна производной  по направлению , где единица стоит на k-ом месте.

30 вопрос Градиент — характеристика, показывающая направление наискорейшего возрастания некоторой величины, значение которой меняется от одной точки пространства к другой. Например, если взять высоту поверхности Земли над уровнем моря (2-мерное пространство), то её градиент в каждой точке поверхности будет показывать «в горку».

Как видно из объяснения, градиент является векторной функцией, а величина, которую он характеризует — функцией скалярной.

Формально, для случая трёхмерного пространства, градиентом называется векторная функция с компонентами , где φ — некоторая скалярная функция координат x, y, z.

  Вектор с компонентами

называется градиентом функции  и обозначается символом .

31 вопрос Пусть задана функция f(x, y). Тогда каждая из ее частных производных(если они, конечно, существуют)  и , которые называются также частными производными первого порядка, снова являются функцией независимых переменных x, y и может, следовательно также иметь частные производные. Частная производная  обозначается через  или fxx'', а  через  или fxy''. Таким образом, и, аналогично, .

Производные fxx'',fxy'',fyx'' и fyy'' называются частными производными второго порядка. Рассматривая частные производные от них, получим всевозможные частные производные третьего порядка:  и т. д. Пусть  и  непрерывны в некоторой окрестности точки (xy), а  и  непрерывны в самой точке (xy). Тогда в точке (xy) равенство:=

32 вопрос Функция называется первообразной функцией для функции на промежутке , если в каждой точке этого промежутка .

Пример. является первообразной для , т.к. .

Можно заметить, что если для функции существует первообразная , то она не является единственной. Возвращаясь к примеру, видно, что и функции , и вообще ( - некоторое число) являются первообразными для функции . Таким образом можно сформулировать следующую теорему.

Теорема. Если и - первообразные для функции на некотором промежутке , то найдется такое число , что будет справедливо равенство:

.

Из данной теоремы следует, что, если - первообразная для функции , то выражение вида , где - произвольное число, задает все возможные первообразные для .

Совокупность всех первообразных функции на промежутке называется неопределенным интегралом от функции и обозначается , где - знак интеграла, - подынтегральная функция, - подынтегральное выражение.

Таким образом:,

где - некоторая первообразная для , произвольная постоянная.

Определение. Операция нахождения неопределенного интеграла называется интегрированием этой функции.

Свойства неопределенного интеграла

  1. Производная от неопределенного интеграла равна подынтегральной функции, т.е. .

  2. Дифференциал неопределенного интеграла равен подынтегральному выражению, т.е.

  3. Неопределенный интеграл от дифференциала некоторой функции равен этой функции с точностью до постоянного слагаемого, т.е. .

  4. Постоянный множитель можно выносить за знак интеграла, т.е. , где - некоторое число.

  5. Интеграл от алгебраической суммы двух функций равен такой же сумме интегралов от этих функций, т.е. .

33 вопрос Метод непосредственного интегрирования основан на предположении о возможном значении первообразной функции с дальнейшей проверкой этого значения дифференцированием. Рассмотрим применение этого метода на примере:

Требуется найти значение интеграла . На основе известной формулы дифференцирования  можно сделать вывод, что искомый интеграл равен , где С – некоторое постоянное число. Однако, с другой стороны . Таким образом, окончательно можно сделать вывод:

  Заметим, что в отличие от дифференцирования, где для нахождения производной использовались четкие приемы и методы, правила нахождения производной, наконец определение производной, для интегрирования такие методы недоступны. Если при нахождении производной мы пользовались, так сказать, конструктивными методами, которые, базируясь на определенных правилах, приводили к результату, то при нахождении первообразной приходится в основном опираться на знания таблиц производных и первообразных.

  Что касается метода непосредственного интегрирования, то он применим только для некоторых весьма ограниченных классов функций. Функций, для которых можно с ходу найти первообразную очень мало. Поэтому в большинстве случаев применяются способы, описанные ниже.

34 вопрос Способ подстановки (замены переменных).

  Теорема: Если требуется найти интеграл , но сложно отыскать первообразную, то с помощью замены x = j(t) и dx = j¢(t)dt получается:

 

  Доказательство: Продифференцируем предлагаемое равенство:

По рассмотренному выше свойству №2 неопределенного интеграла: f(x)dx = f[j(t)]j¢(t)dt

что с учетом введенных обозначений и является исходным предположением. Теорема доказана.

Замечание. Новую переменную можно не выписывать явно, а производить преобразования функции под знаком дифференциала (путем введения постоянных и переменных под знак дифференциала).

Алгоритм вычисления:

      1. Делаем замену.

      2. Дифференцируем замену .

      3. Под знаком интеграла переходим к новой переменной.

      4. Находим табличный интеграл.

      5. Возвращаемся к старой переменной.

35 вопрос Интегрирование - действие, обратное дифференцированию, то каждому правилу дифференцирования должно соответствовать некоторое правило интегрирования.

Пусть и - дифференцируемые функции от х. Имеем: , откуда .

Интегрируя обе части последнего равенства, получим: , или

.

Это и есть формула интегрирования по частям.

Интегрирование по частям состоит в том, что подынтегральное выражение представляется каким-либо образом в виде произведения двух множителей и (последний обязательно содержит ) и согласно формуле данное интегрирование заменяется двумя:

1) при отыскании из выражения для ;

2) при отыскании интеграла от .

Может оказаться, что эти два интегрирования легко осуществляются, тогда как заданный интеграл непосредственно найти трудно.

Правило интегрирования по частям нередко позволяет довести интегрирование до конца

36 вопрос Определенным интегралом от функции на отрезке называется предел интегральной суммы при , т.е. .

- нижний предел, - верхний предел, - подынтегральная функция, - подынтегральное выражение.

Замечание 1. Переменную под знаком интеграла можно обозначать любой буквой: и т. д.

Замечание 2. В отличие от неопределенного интеграла , который представляет семейство функций (первообразных), определенный интеграл есть определенное число.Геометрический смысл определенного интеграла.

Пусть на отрезке задана неотрицательная функция . Тогда площадь криволинейной трапеции, ограниченной кривой , прямыми , и осью абсцисс (рис.10.2) численно равна определенному интегралу от функции на .

Экономический смысл определенного интеграла.

Пусть функция описывает изменение производительности некоторого производства с течением времени. Тогда объем продукции , произведенной за промежуток времени , равен .

Теорема (достаточное условие существования определенного интеграла). Если функция непрерывна на отрезке , то она интегрируема на этом отрезке.

37 вопрос Формула Ньютона-Лейбница - даёт соотношение между операциями взятия определенного интеграла и вычисления первообразной. Формула Ньютона-Лейбница - основная формула интегрального исчисления.

Данная формула верна для любой функции f(x), непрерывной на отрезке [а, b]F - первообразная для f(x). Таким образом, для вычисления определенного интеграла нужно найти какую-либо первообразную F функции f(x) , вычислить ее значения в точках a и b и найти разность F(b) – F(a).

Свойства определенного интеграла

  1. Постоянный множитель можно выносить за знак интеграла: .

  2. Интеграл от алгебраической суммы 2х функций равен такой же сумме интегралов от этих функций: .

  3. При перестановке пределов интегрирования знак определенного интеграла меняется на противоположный: .

4) Если отрезок интегрирования разбит на части, то интеграл на всем отрезке равен сумме интегралов для каждой из возникших частей: .

5) Если на отрезке , где , , то и , т.е. обе части неравенства можно почленно интегрировать.

6) Теорема о среднем. Если функция непрерывна на отрезке , то найдется такое значение , что .

Т.о. теорема о среднем утверждает, что найдется такая точка из отрезка , что площадь под кривой равна площади прямоугольника со сторонами и .