Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Elektrichestvo_i_magnetizm.docx
Скачиваний:
16
Добавлен:
24.12.2018
Размер:
4.02 Mб
Скачать

12. Принцип работы электронного осциллографа. Электронно-лучевая трубка. Развёртка. Синхронизация. Чувствительность.

Осциллограф – это измерительное устройство для визуального наблюдения или записи функциональной зависимости двух величин, преобразованных в электрический сигнал. Осциллографы широко используют для наблюдения временной зависимости переменной величины.

Главой частью электронного осциллографа является электронно-лучевая трубка (ЭЛТ). Ее элементы расположены в вакуумном баллоне. Они включают в себя люминесцирующий экран, отклоняющую систему из двух пар отклоняющих пластин и электронную пушку, состоящую из подогревного катода, подобного катоду диода, и специальных электродов, которые ускоряют и фокусируют электроны. На пластины вертикального и горизонтального отклонения подается разность потенциалов. В зависимости от ее знака и значения пучок электронов отклоняется в вертикальном или горизонтальном направлении. Сформированный и определенным образом направленный электронный пучок попадает на люминесцентный экран – переднюю стенку электронно-лучевой трубки, покрытую люминофорами, которые способны светиться под воздействием ударов электронов (катодолюминесценция).

Пучок электронов на экране изобразится светящейся точкой. Плавно изменяя напряжение на отклоняющих пластинах, светящуюся точку можно перемещать по экрану. Люминофоры обладают свойством посесвечения, они светятся в данном месте некоторое время после того, как электронный пучок сместился с данного места. Поэтому перемещение пучка наблюдается на экране в виде линии.

Электронно-лучевая трубка (ЭЛТ)

Структурная схема осциллографа дана на след рисунке:

Передняя панель осциллографа: ( ЛУЧШЕ ВЗЯТЬ ФОТКУ ИЗ УЧЕБНИКА, В РАЗЫ ЛУЧШЕ)

Поданный на клеммы «Вход Y» и «Земля» сигнал усиливается и подается на вертикально отклоняющиеся пластины. На экране осциллографа такой сигнал изобразится отрезком вертикальной прямой. Для наблюдения зависимости сигнала от времени следует светящейся точке сообщить одновременно равномерное движение в горизонтальном направлении. Чтобы записать периодический процесс, точка должна за некоторый конечный промежуток времени переместиться слева направо по экрану и в возможно короткий промежуток времени вернуться обратно. Поэтому напряжение, подаваемое на горизонтально отклоняющиеся пластины, должно иметь пилообразный вид.

Для того чтобы периодический процесс отображался на экране неподвижным изображением, необходимо подобрать достаточно точно частоту развертки: на один период времени развертки должно приходиться целое число периодов исследуемого сигнала. Это условие выполнятся блоком синхронизации развертки. Ручки «Диапазон частот» и «Частота плавно» позволяют задавать нужную частоту развертки.

Если исследуемый процесс однократный или непериодический, то может быть использован ждущий режим развертки, предусмотренный в некоторых осциллографах. Этот режим развертки действует каждый раз и только тогда, когда возникает регистрируемый процесс.

В результате луч движется по экрану слева направо с определенной постоянной скоростью, после чего очень быстро возвращается к левой границе экрана и повторяет свое движение. Расстояние, которое проходит луч вдоль горизонтальной оси, пропорционально времени. Этот процесс называется разверткой, а горизонтальная линия, которую луч прочерчивает по экрану, называется линией развертки.

Чувствительность ,как я понял, это амплитуда колебаний линии на осциллографе, а Синхронизация это процесс застопорения движущейся линии для получения картинки , как Фигуры Лиссажу.

13.Электроды для съема биоэлектрического сигнала это

проводники специальной формы,, соединяющие измерительную цепь с

биологической системой.

При диагностике электроды используются не только для съема электрического сигнала, но и для подведения внешнего электромагнит­ного воздействия, например в реографии. В ме­дицине электроды используются также для ока­зания электромагнитного воздействия с целью лечения и при электростимуляции.

К электродам предъявляются определенные требования: они должны быстро фиксировать­ся и сниматься, иметь высокую стабильность электрических параметров, быть прочными, не создавать помех, не раздражать биологическую ткань и т. п.

Важная физическая проблема, относящаяся к электродам для съема биоэлектрического сигнала, заключается в минимизации потерь полезной информации, особенно на переходном сопротив­лении электрод — кожа. Эквивалентная электрическая схема контура, включающего в себя биологическую систему и электро­ды, изображена на рис. 17.2 (Јбп — ЭДС источника биопотенциа­лов; г — сопротивление внутренних тканей биологической систе­мы; R — сопротивление кожи и электродов, контактирующих с ней; Rnx — входное сопротивление усилителя биопотенциалов). Из закона Ома, предполагая, что сила тока на всех участках кон­тура одинакова, имеем

Јбп = Ir+IR + IRBX = IRi + IRBx, где Кi = г + R.

Можно условно назвать падение напряжения на входе усилите­ля IRBX «полезным», так как усилитель увеличивает именно эту часть ЭДС источника. Падения напряжения Iг и IR внутри биоло­гической системы и на системе электрод — кожа в этом смысле «бесполезны». Так как величина Јбп задана, а уменьшить г невоз­можно, то увеличить IRBx можно лишь уменьшением R, и прежде всего уменьшением сопротивления контакта электрод — кожа.

Для уменьшения переходного сопротивления электрод — кожа стараются увеличить проводимость среды между электродом и ко­жей, используют марлевые салфетки, смоченные физиологическим раствором, или электропроводящие пасты. Можно уменьшить это сопротивление, увеличив площадь контакта электрод — кожа, т. е. увеличив размер электрода, но при этом электрод будет захватывать несколько эквипотенциальных поверхностей (см., например, рис. 12.15) и истинная картина электрического поля будет искажена.

По назначению электроды для съема биоэлектрического сигна­ла подразделяют на следующие группы: 1) для кратковременного применения в кабинетах функциональной диагностики, напри­мер для разового снятия электрокардиограммы; 2) для длитель­ного использования, например при постоянном наблюдении за тя­желобольными в условиях палат интенсивной терапии; 3) для ис­пользования на подвижных обследуемых, например в спортивной или космической медицине; 4) для экстренного применения, на­пример в условиях скорой помощи. Ясно, что во всех случаях про­явится своя специфика применения электродов: физиологиче­ский раствор может высохнуть и сопротивление изменится, если наблюдение биоэлектрических сигналов длительное, при бессоз­нательном состоянии пациента надежнее использовать игольча­тые электроды и т. п.

При пользовании электродами в электрофизиологических ис­следованиях возникают две специфические проблемы. Одна из них— возникновение гальванической ЭДС при контакте электро­дов с биологической тканью. Другая — электролитическая поля­ризация электродов, что проявляется в выделении на электродах продуктов реакций при прохождении тока. В результате возника­ет встречная по отношению к основной ЭДС.

В обоих случаях возникающие ЭДС искажают снимаемый электродами полезный биоэлектрический сигнал. Существуют способы, позволяющие снизить или устранить подобные влияния, однако эти приемы относятся к электрохимии и в этом курсе не рассматриваются.

В заключение рассмотрим устройство некоторых электродов. Для снятия электрокардиограмм к конечностям специальными резиновыми лентами прикрепляют электроды — металлические пластинки с клеммами 1 (рис. 17.3), в которые вставляют и за­крепляют штыри кабелей отведений. Кабели соединяют электро­ды с электрокардиографом. На груди пациента устанавливают грудной электрод 2. Он удерживается резиновой присоской. Этот электрод также имеет клемму для штыря кабеля отведений.

В микроэлектродной практике используют стеклянные микро­электроды. Профиль такого электрода изображен на рис. 17.4, кон­чик его имеет диаметр 0,5 мкм. Корпус электрода является изоля­тором, внутри находится проводник в виде электролита. Изготовле­ние микроэлектродов и работа с ними представляют определенные трудности, однако такой микроэлектрод позволяет прокалывать мембрану клетки и проводить внутриклеточные исследования.

Многие медико-биологические характеристики нельзя непо­средственно «снять» электродами, так как эти характеристики не отражаются биоэлектрическим сигналом: давление крови, темпе­ратура, звуки сердца и многие другие. В некоторых случаях меди­ко-биологическая информация связана с электрическим сигна­лом, однако к ней удобнее подойти как к неэлектрической вели­чине (например, пульс). В этих случаях используют датчики (измерительные преобразователи).

Датчиком называют устройство, преобразующее измеряемую или контролируемую величину в сигнал, удобный для передачи, дальнейшего преобразования или регистрации. Датчик, к которо­му подведена измеряемая величина, т. е. первый в измерительной цепи, называется первичным.

В рамках медицинской электроники рассматриваются только такие датчики, которые преобразуют измеряемую или контроли­руемую неэлектрическую величину в электрический сигнал.

Использование электрических сигналов предпочтительнее, чем иных, так как электронные устройства позволяют сравнительно несложно усиливать их, передавать на расстояние и регистриро­вать. Датчики подразделяются на генераторные и параметриче­ские.

Генераторные датчики под воздействием измеряемого сигнала непосредственно генерируют напряжение или ток. Укажем некото­рые типы этих датчиков и явления, на которых они основаны: 1) пье­зоэлектрические, пьезоэлектрический эффект; 2) тер­моэлектрические, термоэлектричество — явление возникновения ЭДС в электрической цепи, состоящей из последовательно соединен­ных разнородных проводников, имеющих различную температуру спаев; 3) индукционные, электромагнитная индукция; 4) фото­электрические, фотоэффект.

Параметрические датчики под воздействием измеряемого сиг­нала изменяют какой-либо свой параметр. Укажем некоторые типы этих датчиков и измеряемый с их помощью параметр: 1) емкост­ные, емкость; 2) реостатные, омическое сопротивление; 3) индук­тивные, индуктивность или взаимная индуктивность.

В зависимости от вида энергии, являющейся носителем инфор­мации, различают механические, акустические (звуковые), тем­пературные, электрические, оптические и другие датчики.

В некоторых случаях датчики называют по измеряемой величи­не; так, например, датчик давления, тензометрический датчик (тен- зодатчик) — для измерения перемещения или деформации и т. д.

Приведем возможные медико-биологические применения ука­занных типов датчиков (табл.).

Датчик характеризуется функцией преобразования — функ­циональной зависимостью выходной величины у от входной х, ко­торая описывается аналитическим выражением у = f(x) или гра­фиком. Наиболее простым и удобным случаем является прямо пропорциональная зависимость у = kx.

Чувствительность датчика показывает, в какой мере вы­ходная величина реагирует на изменение входной:

Она в зависимости от вида датчика выражается, например, в омах на миллиметр (Ом/мм), в милливольтах на кельвин (мВ/К) и т. д.

Существенны временные характеристики датчиков. Дело в том, что физические процессы в датчиках не происходят мгновен­но, это приводит к запаздыванию изменения выходной величины по сравнению с изменением входной. Аналитически такая особен­ность приводит к зависимости чувствительности датчика от ско­рости изменения входной величины dx/dt или от частоты при из­менении х по гармоническому закону.

При работе с датчиками следует учитывать возможные, специ­фические для них, погрешности. Причинами погрешностей могутбыть следующие факторы: 1) темпера­турная зависимость функции преобра­зования; 2) гистерезис — запаздывание у от х даже при медленном изменении входной величины, происходящее в ре­зультате необратимых процессов в дат­чике; 3) непостоянство функции пре­образования во времени; 4) обратное воздействие датчика на биоло­гическую систему, приводящее к изменению показаний; 5) инерци­онность датчика (пренебрежение его временными характеристика­ми) и др.

Конструкция датчиков, используемых в медицине, весьма раз­нообразна: от простейших (типа термопары) до сложных допле- ровских датчиков. Опишем в виде примера весьма простой датчик частоты дыхания — реостатный (резистивный).

Этот датчик (рис.) выполнен в виде резиновой трубки 1, которая заполнена мелким угольным порошком 2. С торцов труб­ки вмонтированы электроды 3. Через уголь можно пропускать ток от внешнего источника 4.При растяжении трубки увеличивается длина L и уменьшается площадь S сечения столбика угля и согласно формуле увеличи­вается сопротивление R

R = pl/S,

где р — удельное сопротивление угольного порошка.

Таким образом, если трубкой опоясать грудную клетку или, как это обычно делается, прикрепить к концам трубки ремень и охватить им грудную клетку, то при вдохе трубка растягивается, а при выдохе — сокращается. Сила тока в цепи будет изменяться с частотой дыхания, что можно зафиксировать, используя соот­ветствующую измерительную схему.

В заключение отметим, что датчики являются техническими аналогами рецепторов биологических систем.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]