Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Тмм зачет.docx
Скачиваний:
8
Добавлен:
21.12.2018
Размер:
350.89 Кб
Скачать

4.2.1 Определение уравновешивающей силы (момента) по методу

Жуковского Н. Е.

В тех случаях, когда требуется найти только неизвестную внешнюю силу без определения реакций в кинематических парах (например, уравновешивающую силу или момент), удобно воспользоваться методом Жуковского Н.Е., не прибегая к последовательному силовому расчету всего механизма.

Метод основан на принципе возможных перемещений – если система находится в равновесии, то сумма работ внешних сил и моментов на малых возможных перемещениях равна нулю ( Ai = 0). Так как с помощью сил инерции (по принципу Даламбера) механизм приведен в состояние равновесия, то в данном случае принцип возможных перемещений применим.

F I . ds i . cos i+ M i .di=0

Перейдем к конкретному мгновенному положению механизма, разделив все члены на бесконечно малый промежуток времени (dt), за который происходят указанные малые перемещения:

F i . (ds i /dt) . cosi + M i . (di /dt)=0,

получаем

F i . v i . cos i + M i . i =0.

Таким образом, уравнение работ трансформируется в уравнение мгновенных мощностей и принцип возможных перемещений в применении к механизму можно сформулировать следующим образом – если механизм находится в равновесии, то сумма мгновенных мощностей всех внешних сил и моментов, приложенных к звеньям механизма, равна нулю. Жуковским Н.Е. был предложен метод составления этого уравнения с использованием плана скоростей (рисунок 19).

Рисунок 19

На рисунке 19 изображено некоторое звено, в точке А которого приложена сила F. Скорость VA этой точки изображается на плане скоростей вектором в масштабе KV. Перенесем силу F в точку "а" плана скоростей, повернув на 900 (в любую сторону). Возьмем формально момент этой повернутой силы относительно полюса плана скоростей:

"momvF" = F . . KV = F . . cos . KV ,

но .KV =VA , т.е. это истинная скорость точки А, а значит

.

В результате таким приемом фактически получаем мгновенную мощность, развиваемую силой F.

Таким образом для составления уравнения Жуковского Н.Е. прикладывают все силы, действующие на звенья механизма (включая силы инерции), в соответствующие точки плана скоростей, предварительно повернув их на 900. Взяв формально сумму моментов этих повернутых сил относительно полюса плана скоростей, фактически получают уравнение развиваемых ими мощностей. К полученному уравнению добавляют мощности, развиваемые моментами (включая моменты сил инерции). В уравнение Жуковского Н.Е. мощности должны входить с соответствующими знаками (см. рисунок 16 ).

Примечание: для составления уравнения ЖуковскогоН.Е. можно на повернутый (на 900) план скоростей прикладывать силы в своем истинном направлении.

5.2.3 Кинематика зубчатых механизмов.

1) Одна пара зубчатых колес (рисунок 35)

а) б)

Рисунок 35

По основному закону зацепления

При пересопряжении зубьев следующий зуб второго колеса должен попасть в следующую впадину первого, т.е. шаги на начальных окружностях находящихся в зацеплении колес должны быть одинаковыми:

pw1=pw2 , ,

откуда получаем

.

Таким образом, для одной пары колес передаточное отношение прямо пропорционально отношению угловых скоростей и обратно пропорционально отношению чисел зубьев колес, составляющих пару:

.

Знак передаточного отношения показывает направление вращения колеса на выходе по отношению к направлению вращения на входе:

(+) – направления вращения на входе и на выходе совпадают. Для пары колес направление вращения совпадает при внутреннем зацеплении (рисунок 35б);

(–) – колеса вращаются в противоположные стороны. Это происходит при внешнем зацеплении (рисунок 35а).

На рисунке 35 дана фронтальная проекция передач, а также их условное изображение на кинематических схемах при виде сбоку (или в разрезе).

2) Многоступенчатая передача

Для увеличения кинематического эффекта несколько зубчатых пар могут последовательно соединяться в единый механизм. Такой механизм называется многоступенчатым зубчатым механизмом или многоступенчатой передачей. Схема одного из таких механизмов приведена на рисунке 36.

Рисунок 36

Запишем передаточные отношения для каждой пары колес данного механизма:

, , .

Перемножим формально эти передаточные отношения:

.

Из схемы видно, что колеса 2 и 3 находятся на одном валу и вращаются с одной угловой скоростью (2 = 3), аналогично 4 = 5. Поэтому в приведенном выше уравнении эти члены сократились.

Таким образом, общее передаточное отношение многоступенчатого механизма равно произведению частных передаточных отношений ступеней, из которых состоит данный механизм:

В этой формуле “m” – число передач внешнего зацепления (если число передач внешнего зацепления четное, то знак "+", т.е. колеса на входе и на выходе вращаются в одну сторону; если нечетное, то знак "–". Количество передач внутреннего зацепления не учитывается, т.к. внутреннее зацепление не изменяет направление вращения). В приведенном примере т=2 (пары Z1* Z2 и Z3* Z4 ; пара Z5* Z6 – пара внутреннего зацепления) и, таким образом, колеса "1" и "6" вращаются в одну сторону.

3) Планетарные и дифференциальные механизмы

В практике применяются зубчатые механизмы, имеющие колеса с подвижными геометрическими осями (сателлиты). Такие механизмы называются планетарными (если имеют одну степень свободы) или дифференциальными (если степень свободы равна двум). Планетарные и дифференциальные механизмы позволяют получить более высокий кинематический эффект, более высокий кпд, более удобную компоновку. Дифференциальные механизмы позволяют также раскладывать одно движение на два или складывать два движения в одно.

а) б)

Рисунок 37

На рисунке 37 приведен пример дифференциального (рисунок 37 а) и планетарного механизмов (рисунок 37 б). В этих механизмах колесо "2" имеет подвижную геометрическую ось – это и есть сателлит.

Неподвижная геометрическая ось, вокруг которой движется ось сателлита, называется центральной осью. Колеса, геометрические оси которых совпадают с центральной, также называются центральными (на рисунке 37 колеса "1" и "3" – иногда такие колеса называют солнечными). Звено, соединяющее ось сателлитов с центральной осью, называется водилом ( водило обычно обозначается "H").

При кинематическом исследовании дифференциальных и планетарных механизмов применяется метод обращения движения (по-другому его называют методом остановки водила). Смысл этого метода заключается в том, что если всем звеньям системы добавить (с любым знаком) одну и ту же скорость, то характер относительного движения этих звеньев не изменится.

Рассмотрим решение с помощью этого метода на примере механизмов, изображенных на рисунке 37. Пусть звенья этого механизма имеют соответственно угловые скорости: 1 , 2 ,3 ,H . Добавим всем этим звеньям угловую скорость (H). Тогда они будут иметь следующие скорости: (1 –H), (2 –H), (3 –H), ( –H) = 0. Водило стало неподвижным, значит и ось сателлита 2 также стала неподвижной, т.е. механизм превратился в обычный многоступенчатый механизм с неподвижными осями всех зубчатых колес. Записываем уравнение передаточного отношения между центральными колесами этого многоступенчатого механизма (для того, чтобы отличить передаточное отношение механизма с остановленным водилом от первоначально заданного, в верхнем индексе ставят обозначение водила H. Для данного примера читается – передаточное отношение от первого к третьему при остановленном водиле):

.

Формулу такого типа, полученную на основе метода обращения движения, называют формулой Виллиса. В данном конкретном механизме (рисунок 38) имеется еще одна особенность – колесо 2 входит последовательно в два зацепления(с первым и третьим колесами), являясь ведомым для первого колеса и ведущим – для второго. В результате в уравнении его число зубьев сократилось, т.е. его число зубьев не влияет на общее передаточное отношения механизма. Такие колеса часто называют «паразитными», хотя правильно их называть ведомо-ведущими.

Полученная формула является универсальной для обоих механизмов, изображенных на рисунке 37. Дифференциальный механизм, изображенный на рисунке 37а, имеет две степени свободы, а поэтому для определенности движения надо задать законы движения двум звеньям. При этом возможны следующие варианты:

1) заданы 1 и3 ; из записанной формулы определяется H (вариант, изображенный на рисунке 37 а);

2) заданы 1 иH ; из записанной формулы определяется 3 ;

3) заданы H и3 ; из записанной формулы определяется 1 .

Так как звеньям можно задавать любые законы движения, то, как частный случай, одному из центральных колес зададим угловую скорость, равную нулю. Например, в рассматриваемом механизме зададим 3 =0, другим словами, затормозим третье колесо. Таким приемом отнимается одна из двух степеней свободы, и механизм из дифференциального превращается в планетарный (рисунок 37 б). Таким образом, планетарный механизм это частный случай дифференциального, когда одно из центральных колес неподвижно (заторможено). Поэтому решаются эти механизмы совершенно одинаково, по одним и тем же уравнениям, только в планетарном механизме для неподвижного колеса в уравнение подставляется значение угловой скорости, равное нулю. Для изображенного на рисунке 37б планетарного механизма:

.

Из этого уравнения определяется H , если задана 1, или определяется общее передаточное отношение механизма:

,

откуда

.

Здесь приведен конкретный пример решения, но на самом деле на этом примере надо усвоить метод решения, подход к решению такого рода задач, т.к. метод один, но для каждой схемы механизма будут получаться свои уравнения.

4) Сложные механизмы

Существуют механизмы, включающие в свой состав различные части (обычные, планетарные, дифференциальные). В этом случае необходимо разделить механизм на части, записать уравнения передаточных отношений для каждой из них, используя соответствующий метод решения. Совместным решением полученных алгебраических уравнений находят общее передаточное отношение механизма. (Пример см. в рекомендациях по выполнению расчетно-графического задания, представленных в данном учебно-методическом комплексе).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]