Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
OTVYeT (Автосохраненный).docx
Скачиваний:
12
Добавлен:
04.12.2018
Размер:
1.26 Mб
Скачать

19.Базис системы векторов

Базисом системы векторов A1 , A2 ,..., An называется такая подсистема B1, B2 ,...,Br (каждый из векторов B1,B2,...,Br является одним из векторов A1 , A2 ,..., An), которая удовлетворяет следующим условиям: 1. B1,B2,...,Br линейно независимая система векторов; 2. любой вектор Aj системы A1 , A2 ,..., An линейно выражается через векторы B1,B2,...,Br

r — число векторов входящих в базис.

Или

Ба́зис — набор n векторов в n-мерном линейном пространстве, таких, что любой вектор пространства может быть представлен в виде некоторой их линейной комбинации, при этом ни один из базисных векторов не представим в виде линейной комбинации остальных. В более точной формулировке, базис в векторном пространстве — это упорядоченная линейно независимая система векторов такая, что любой вектор этого пространства разложим по ней.

Некоторые свойства базиса : Единственная тривиальная линейная комбинация векторов базиса возможна только при тривиальном наборе коэффициентов. Для любого вектора существует единственное представление в виде линейной комбинации соответствующего базиса. Количество векторов базиса не зависит от выбора базисных векторов и называется размерностью пространства (обозначается dimV).

20. Ранг системы векторов, размерность подпространства

Рангом системы векторов называется число векторов в любом базисе системы, т.е. рангом системы векторов является максимальное число линейно независимых векторов системы.

21. Основные свойства базиса в конечномерном пространстве

Некоторые свойства базиса :

  1. Единственная тривиальная линейная комбинация векторов базиса возможна только при тривиальном наборе коэффициентов.

  2. Для любого вектора существует единственное представление в виде линейной комбинации соответствующего базиса.

  3. Количество векторов базиса не зависит от выбора базисных векторов и называется размерностью пространства (обозначается dimV).

22.Координаты вектора.

Координа́ты ве́ктора ― коэффициенты единственно возможной линейной комбинации базисных векторов в выбранной системе координат, равной данному вектору.

где  — координаты вектора.

Свойства

  • Равные векторы в единой системе координат имеют равные координаты

  • Координаты коллинеарных векторов пропорциональны:

Подразумевается, что координаты вектора b не равны нулю.

  • Квадрат длины вектора равен сумме квадратов его координат:

  • При умножении вектора на действительное число каждая его координата умножается на это число:

  • При сложении векторов соответствующие координаты векторов складываются:

  • Скалярное произведение двух векторов равно сумме произведений их соответствующих координат:

  • Векторное произведение двух векторов можно вычислить с помощью определителя матрицы

где

  • Аналогично, смешанное произведение трех векторов можно найти через определитель

23. Формула преобразования координат вектора

Пусть системы векторов e = {e1, ..., en} и f = {f1, ..., fn} — два базиса n-мерного линейного пространства Ln.

Обозначим xe = (x1,x2, ..., xn) и xf = (x'1,x'2, ..., x'n) — координаты вектора x Ln соответственно в базисах e и f.

Справедливо следующее xe= Ce→f·xf :

Здесь Ce→f — матрица перехода от базиса e к базису f, это матрица, столбцами которой являются координаты базисных векторов f1, ..., fn  в базисе  e1, ..., en:

f1 = с11· e2 + с21· e1 + ... + сn1· en, f2 = с12· e1 + с22· e2 + ... + сn2· en, ..., fn = с1n· e2 + ... + сnn· en.

Формулу преобразования координат вектора при изменении базиса принято записывать в виде

xf= (Ce→f)− 1·xe

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]