Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ФПП ВОПРОСЫ И ЗАДАЧИ контроля остаточных знаний правильный.docx
Скачиваний:
24
Добавлен:
11.03.2016
Размер:
607.02 Кб
Скачать

3.2. Зонная диаграмма полупроводника

‑ Поясните, чем энергетическая зонная диаграмма отличается от потенциальной? Чем понятие зонной диаграммы отличается от понятия зонной структуры?

‑ Пусть в некотором неоднородно легированном полупроводнике, находящемся в равновесном состоянии, зонная диаграмма вдоль одной из пространственных координат X изменяется в соответствии с рисунком:

Рис. 3.Зонная диаграмма неоднородно легированного полупроводника

Поясните, как при этом определить направление электрического поля и почему нельзя измерить вольтметром в этом случае разность потенциалов на концах образца?

‑ Покажите, что в состоянии равновесия уровень Ферми постоянен вдоль любой одномерной полупроводниковой структуры.

‑ Как используя только зонную диаграмму одномерного p-n-перехода можно найти распределение электрического потенциала в нем?

‑ Постройте графическую зависимость собственного уровня Ферми от температуры для Ge, Si, GaAs на их зонных диаграммах. На какую величину будет в этом случае отклоняться уровень Ферми от середины запрещенной зоны при комнатной температуре? Насколько существенно будет это отклонение в сравнении со средней энергией электрона?

3.3 Ключевые задачи

3.3.1 Задача о равновесном состоянии и концентрации подвижных зарядов в полупроводниках

Предположим, что в некотором полупроводнике собственная концентрация равна 8 электронам в единице объема V. Не меняя температуры полупроводника, его залегировали донорной примесью с концентрацией 12 на V, которая полностью ионизовалась, а затем полупроводник перешел в состояние термодинамического (теплового) равновесия. Спрашивается – чему в данном случае равна концентрация основных и неосновных носителей заряда?

Студент решил задачу следующим образом. В начальный момент (без легирования) n=p=ni=8. После введения донорной примеси, которая полностью ионизовалась, в зоне проводимости добавилось 12 электронов/V, а в валентной зоне остались те же 8 дырок/V. Таким образом, в примесном полупроводнике концентрация основных носителей составит 8+12=20электронов/V, а неосновных – 8 дырок/V.

Преподаватель предложил студенту записать основные теоретические соотношения для нахождения концентраций носителей в полупроводниках в состоянии равновесия и проверить их на данном числовом примере. Студент быстро ответил: «Первое фундаментальное уравнение – это уравнение электронейтральности. Т.е. сумма всех положительных зарядов должна равняться сумме всех отрицательных зарядов в любой произвольно выбранной точке полупроводника. Из отрицательных зарядов у нас есть только подвижный заряд электронов. Их ровно 20 шт. на V. Считаем положительный заряд. Он состоит из подвижного заряда дырок. Их 8 шт. И неподвижного заряда ионизированных доноров. По условию их 12шт. Очевидно, что уравнение электронейтральности выполняется. Вторым фундаментальным уравнением является уравнение закона сохранения масс. Т.е. в состоянии равновесия в любой момент времени произведение концентраций основных и неосновных носителей должно быть равно квадрату собственной концентрации. Произведение подвижных носителей у нас 20*8=160, а квадрат собственной концентрации равен 8*8=64. Но 64 не равно 160! Что-то здесь не так…». Студент задумался.

В чем же дело и правильно ли была решена исходная задача?