Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
34_Клетки иммунной системы_2.docx
Скачиваний:
100
Добавлен:
11.03.2016
Размер:
156.82 Кб
Скачать

Популяции т-лимфоцитов.

Среди Т-лимфоцитов различают две фенотипические субпопуляции клеток – CD4+-клeтки и СD8+-клетки. По функциональным характеристикам в популяции Т-лимфоцитов выделяют Т-хелперы гуморального иммунитета, Т-хелперы клеточного иммунитета, Т-супрессоры, Т-цитотоксические клетки. Т-хелперы гуморального и клеточного иммунитета имеют единого предшественника – ТH0-клетки, из которых они генерируются в ходе иммунного ответа.

Т-лимфоциты хелперы гуморального иммунитета (Т H2,CD4+). Клетки несут фенотипический маркер CD4, характеризуются способностью продуцировать интерлейкины 4, 5, 6. Т-хелперы участвуют в качестве вспомогательных клеток в индукции гуморального иммунитета, развитии аллергических реакций, в контроле и регуляции дифференцировки гемопоэтических стволовых клеток.

Т-лимфоциты хелперы клеточного иммунитета (Тн1, CD4+, ).Клетки характеризуются поверхностным маркером CD4 и способностью продуцировать интерлейкин-2, ИНФγ, ФНОβ и ГМ-КСФ. Участвуют в качестве вспомогательных клеток в развитии клеточного иммунитета. Клетки участвуют в индукции воспаления, активации антибактериальных свойств макрофагов, реакции ГЗТ, активации фибробластов соединительной ткани и синтезе в них коллагена.

Т-лимфоциты супрессоры. Т-лимфоциты супрессоры принимают участие в контроле и ограничении развития гуморальных и клеточных иммунных реакций, способствуют их окончанию, поддерживают толерантность к собственным антигенам, блокируют развитие аутоиммунных реакций.

Среди Т-лимфоцитов супрессоров различают:

1) антигенспецифические Т-супрессоры;

2) неспецифические Т-супрессоры.

Следует заметить, что в настоящее время имеются серьезные сомнения в существовании отдельной линии Т-клеток, обладающей только супрессорными свойствами. В ряде работ показано, что супрессивное действие на развитие реакций как гуморального, так и клеточного типов способны оказывать как CD4+, так и CD8+, – клетки.

CD8-цитотоксические лимфоциты.

Цитотоксические Т-лимфоциты непосредственно контактируют с чужеродными клетками и разрушают их. Клеточный иммунитет опосредован цитотоксическими Т-лимфоцитами и Т-хелперами. Многие микроорганизмы живут внутри клеток в недосягаемости для гуморальных антител. Чтобы справиться с внутриклеточными паразитами, возникла обособленная система приобретенного имунитета , основанная на функционировании отдельной субпопуляции лимфоцитов, а именно, цитотоксических T-лимфоцитов ( T-киллеров ). Эти клетки отличаются очень широкой специфичностью. Поскольку T-лимфоциты должны взаимодействовать с содержащими паразитов клетками, они могут узнать антиген только в том случае, если он экспрессирован на поверхности инфицированной клетки. Как и B-лимфоциты , каждая T-клетка имеет специфический рецептор, который распознает этот антиген. ( Рецептор T-лимфоцита структурно отличается от молекулы мембраного иммуноглобулина - рецептора B-лимфоцитов ). При этом T-лимфоциты узнают антиген на поверхности клетки в комплексе с клеточным маркером: молекулами MHC класса I. В процессе распознавания поверхностного антигена цитотоксический T-лимфоцит вступает в теснейший контакт со своей мишенью и уничтожает ее до начала репликации. Кроме того, он продуцирует гамма-интерферон, который ограничивает проникновение вируса в соседние клетки, особенно в тех случаях, когда вирус является слабым индуктором альфа-интерферона и бета-интерферона ( рис. 2.18 : черными квадратами обозначены молекулы MHC).

Цитотоксические T-лимфоциты относятся к субпопуляции T8 (или Ly2 ) и представляют популяцию T-эффекторов и играют важнейшую роль в уничтожении клеток, зараженных вирусами, бактериями, а возможно, участвуют и в предполагаемом надзоре за появлением опухолевых клеток .

Большинство цитотоксических T-клеток (Tц) относится к субпопуляции CD8+ и распознает антиген, презентированный в ассоциации с молекулами MHC класса I , но меньшая их часть (примерно 10%), относящаяся к субпопуляции CD4+ , способна распознавать антиген в ассоциации с молекулами MHC класса II .

Для активации и поражения мишени Tц обладают несколькими механизмами воздействия. Один из них - это передача сигналов при непосредственном клеточном контакте через поверхностные структуры, другой - непрямая сигнализация с помощью цитокинов . Кроме того в цитоплазме многих цитотоксических клеток обнаружены гранулы с белками, высвобождение которых вблизи цитоплазматической мембраны клетки-мишени вызывает ее повреждение.

Цитотоксические T-лимфоциты развиваются из предшественников. Предшественники цитотоксических клеток активируются комплексом антигена и молекул MHC класса I , размножаются и созревают под действием IL-2 , а также еще плохо идентифицированных факторов дифференцировки , продуцируемых T-хелперами .

CD4-лимфоциты (Т-хелперы).

Т-хелперы (от англ. helper — помощник) — Т-лимфоциты, главной функцией которых является усиление адаптивного иммунного ответа. Активируют Т-киллеры, B-лимфоциты, моноциты, NK-клетки, презентируя им фрагменты чужеродного антигена при прямом контакте, а также гуморально, выделяя цитокины. Основным фенотипическим признаком Т-хелперов служит наличие на поверхности клетки молекулы CD4. Т-хелперы распознают антигены при взаимодействии их Т-клеточного рецептора с антигеном, связанным с молекулами главного комплекса гистосовместимости 2 класса (MHC-II).

Выделяют несколько подтипов Т-хелперов:

  • Т-хелперы 0 (Th0) — «наивные», недифференцированные Т-хелперы;

  • Т-хелперы 1 (Th1) — преимущественно способствуют развитию клеточного иммунного ответа, активируя Т-киллеры; основной выделяемый цитокин — интерферон-гамма;

  • Т-хелперы 2 (Th2) — активируют В-лимфоциты, способствуя развитию гуморального иммунного ответа; продуцируют интерлейкины 4, 5 и 13;

  • Т-хелперы 3 (Т-reg, Т-регуляторы, Т-супрессоры) — экспрессируют на поверхности молекулы CD25 и Foxp3, секретируют интерлейкин-10 и трансформирующий фактор роста-beta (TGF-beta) и супрессируют иммунный ответ:

  • Т-хелперы 17 (Th17) — подтип Т-хелперов, который в больших количествах продуцирует провоспалительный цитокин — IL-17. Показана роль Th17-клеток в развитии аутоиммунной патологии.

Т-хелперы 1 и 2 типа.

Тh1 вырабатывают интерферон гамма и интерлейкин-2 , стимулируют пролиферацию цитотоксических Т-лимфоцитов и активируют макрофаги.

Th2 вырабатывают интерлейкин-4 , интерлейкин-5 , интерлейкин-6 , стимулируют пролиферацию и дифференцировку В-лимфоцитов , а также синтез антител разных классов.

Передача апоптотического сигнала.

Инициация апоптоза может происходить посредством внешних (внеклеточных) или внутриклеточных факторов. Например, в результате гипоксии, гипероксии, субнекротического поражения химическими или физическими агентами, перекрёстного связывания соответствующих рецепторов, нарушения сигналов клеточного цикла, удаления факторов роста и метаболизма и т. д. Несмотря на разнообразие инициирующих факторов, выделяются два основных пути передачи сигнала апоптоза: рецептор-зависимый (внешний) сигнальный путь с участием рецепторов гибели клетки и митохондриальный (собственный) путь.

Рецептор-зависимый сигнальный путь

Схема передачи сигналов апоптоза при посредстве рецепторов смерти CD95, TNFR1 и DR3

Процесс апоптоза часто (например, у млекопитающих) начинается с взаимодействия специфических внеклеточных лигандов[~ 1] с рецепторами клеточной гибели, экспрессированными на поверхности клеточной мембраны. Рецепторы, воспринимающие сигнал апоптоза, относятся к суперсемейству TNF-рецепторов (англ. tumor necrosis factor receptor или кратко TNFR — «рецептор фактора некроза опухолей»). Наиболее изученными рецепторами смерти, для которых описана и определена роль в апоптозе, являются CD95 (также известный как Fas или APO-1) и TNFR1 (также называемый p55 или CD120a). К дополнительным относятся CARI, DR3 (англ. death receptor 3 — «рецептор смерти 3»), DR4 и DR5.

Все рецепторы смерти представляют собой трансмембранные белки, характеризующиеся наличием общей последовательности из 80 аминокислот в цитоплазматическом домене. Данная последовательность называется доменом смерти (англ. death domain или кратко DD) и является необходимой для трансдукции сигнала апоптоза. Внеклеточные участки рецепторов смерти взаимодействуют с тримерами лигандов (CD95L, TNF, Apo3L, Apo2L и т. п.). Тримеры лигандов в результате взаимодействия тримеризуют рецепторы смерти (то есть «сшивают» 3 молекулы рецептора). Активированный таким образом рецептор взаимодействует с соответствующим внутриклеточным адаптером (или адаптерами). Для рецептора CD95(Fas/APO-1) адаптером является FADD (от англ. Fas-associated DD-protein — «белок, взаимодействующий с доменом смерти Fas-рецептора»). Для рецепторов TNFR1 и DR3 адаптером является TRADD (от англ. TNFR1-associated DD-protein — «белок, взаимодействующий с доменом смерти TNFR1-рецептора»).

Адаптер, ассоциированный с рецептором смерти, вступает во взаимодействие с эффекторами — пока ещё неактивными предшественниками протеаз из семейства инициирующих каспаз — с прокаспазами. В результате цепочки взаимодействия «лиганд-рецептор-адаптер-эффектор» формируются агрегаты, в которых происходит активация каспаз. Данные агрегаты именуются апоптосомами, апоптозными шаперонами или сигнальными комплексами, индуцирующими смерть (от англ. DISC — death-inducing signaling complex — «сигнальный комплекс, индуцирующий смерть»). Примером апоптосомы может служить комплекс FasL-Fas-FADD-прокаспаза-8, в котором активируется каспаза-8.

Рецепторы смерти, адаптеры и эффекторы взаимодействуют между собой сходными по структуре доменами: DD, DED, CARD. DD (от англ. death domain — «домен смерти») участвует во взаимодействии рецептора Fas с адаптером FADD и во взаимодействии рецепторов TNFR1 или DR3 с адаптером TRADD. Посредством домена DED (от англ. death-effector domain — «домен эффектора смерти») осуществляется взаимодействие адаптера FADD с прокаспазами −8 и −10. Домен CARD (от англ. caspase activation and recruitment domain — «домен активации и рекрутирования каспазы») участвует во взаимодействии адаптера RAIDD с прокаспазой-2.

Посредством рецепторов смерти могут быть активированы три инициирующие каспазы: −2; −8 и −10. Активированные инициирующие каспазы далее участвуют в активации эффекторных каспаз.

Митохондриальный сигнальный путь

Большинство форм апоптоза у позвоночных реализуется по митохондриальному пути, а не через рецепторы клеточной гибели. Митохондриальный сигнальный путь апоптоза реализуется в результате выхода апоптогенных белков из межмембранного пространства митохондрий в цитоплазму клетки. Высвобождение апоптогенных белков, предположительно, может осуществляться двумя путями: за счёт разрыва митохондриальной мембраны или же путём открытия высокопроницаемых каналов на внешней мембране митохондрий.

Ключевым событием митохондриального пути апоптоза является повышение проницаемости наружной мембраны митохондрий (англ. Mitochondrial Outer Membrane Permeabilization, MOMP). Существенную роль в повышении MOMP играют апоптотические Bcl-2 белки — Bax и Bak. Они встраиваются в наружную мембрану митохондрий и олигомеризуются. При этом, вероятно, нарушается целостность внешней мембраны митохондрий, по неизвестному пока механизму. При повышении MOMP из межмембранного пространства митохондрий в цитозоль высвобождаются растворимые белки, участвующие в апоптозе: цитохром c — белок с молекулярной массой 15 кДа; прокаспазы −2, −3 и −9; AIF (от англ. apoptosis inducing factor — «фактор индуцирующий апоптоз») — флавопротеин с молекулярной массой 57 кДа.

Разрыв внешней мембраны митохондрий объясняется увеличением объема митохондриального матрикса. Данный процесс связывают с раскрытием пор митохондриальной мембраны, приводящим к снижению мембранного потенциала и высокоамплитудному набуханию митохондрий вследствие осмотического дисбаланса. Поры диаметром 2,6—2,9 нм способны пропускать низкомолекулярные вещества массой до 1,5 кДа. Раскрытие пор стимулируют следующие факторы: неорганический фосфат; каспазы; SH-реагенты; истощение клеток восстановленным глутатионом; образование активных форм кислорода; разобщение окислительного фосфорилирования протонофорными соединениями; увеличение содержания Ca2+ в цитоплазме; воздействие церамида; истощение митохондриального пула АТФ и др.

Другие пути индукции апоптоза

Стоит отметить, что реализация апоптоза может происходить в результате комбинированного действия двух основных сигнальных путей — рецептор-зависимого и митохондриального. Помимо этого, существует ряд менее распространённых механизмов инициации апоптоза. Например, за счёт активации прокаспазы-12, локализованной в эндоплазматическом ретикулуме. Высвобождение и активация прокаспазы-12 при этом обусловлены нарушениями внутриклеточного гомеостаза ионов кальция (Ca2+). Активация апоптоза также может быть связана с нарушением адгезии клеток.

В качестве ещё одного фактора индукции апоптоза рассматривается атака инфицированных клеток цитотоксическими Т-лимфоцитами, которые, помимо активации Fas-рецептора, способны секретировать перфорин вблизи мембраны заражённой клетки. Перфорин, полимеризуясь, образует трансмембранные каналы, через которые внутрь клетки поступают лимфотоксин-альфа и смесь сериновых протеаз (гранзимов). Далее гранзим B активирует каспазу-3 и запускается каспазный каскад.

Возможна инициация клеточной смерти при высвобождении лизосомальных протеаз — катепсинов. К примеру, каспаза-8 вызывает выход из лизосом активного катепсина B, который затем расщепляет регуляторный белок Bid. В результате образуется активный белок t-Bid, активирующий в свою очередь проапоптозный белок Bax.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]