Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
хим. ч. 1.doc
Скачиваний:
60
Добавлен:
27.02.2016
Размер:
2.05 Mб
Скачать

Второй закон термодинамики.

Самопроизвольный процесс, происходящий без изменения энергетического запаса системы совершается только в направлении, при котором энтропия возрастает (S>О);

Австрийским физиком Больцманом было установлено

Энтропия- это логарифмическое выражение вероятности существования системы.

R- универсальная газовая постоянная = 8,314 Дж/моль К;

N - постоянная Авогадро ();

Следовательно, чем большим числом макрочастиц представлена рассматриваемая макросистема, тем больше вариантов распределение этих частиц, при которых может быть достигнуто макросостояние, тем выше значение энтропии.

1. С повышением температуры энтропия возрастает, так как усиливается неупорядоченность, хаос в системе, т.е.:

, то

2. Энтропия скачкообразно увеличивается при переходе вещества (кристаллического) в жидкое, т.е. в процессе плавления:

Для веществ в кристаллическом состоянии характерна упорядоченность частиц и наличие ближнего и дальнего порядка. Частицы расположены в строгой последовательности.

Зависимость энтропии от температуры tможно выразить графиком:

Здесь необходима различать постепенное изменение энтропии () за счет изменения параметров состояния (Т) и скачкообразное – в результате фазовых переходов и химических реакций.

3. Процессы — нагревания, кипения, диссоциации, вызывающие увеличение

беспорядка сопровождаются увеличением энтропии.

4. Кристаллизация, полимеризация связана с уменьшением объема, сопровождаются уменьшением энтропии.

5. Чем тверже вещество, тем меньше его энтропия, чем мягче, тем энтропия больше.

По группам сверху вниз наблюдается увеличение энтропии. В отличие от всех других термодинамических функций энтропия имеет абсолютное значение.

Абсолютная энтропия идеального кристалла при ок равна нулю.

В идеальном кристалле при О К все частицы находятся в одном энергетическом состоянии, т.к. кристалл упорядочен, тепловое движение

отсутствует, то для идеального кристалла возможно только 1 состояние полной упорядоченности, т.е.

W=1

S=Kln1=0

Энтропии веществ как и их теплота образования принято относить к

определенным условиям (и)

Энтропию при этих условиях называют стандартной энтропией образования и её значения сведены в таблицу

Дж/моль* К

Дж/моль* К

Дж/моль* К

Дж/моль* К

Энтропия является функцией состояния системы и ее изменения в ходе химических реакций рассчитывается как разница суммарных энтропии продуктов реакций и исходных веществ

Вывод:

Изменение энтропии указывает на термодинамическую вероятность самопроизвольного протекания процесса. Если S > 0, то процесс, наиболее вероятен. S< 0, то процесс менее вероятен, но он может быть осуществлен.

Энергия Гиббса.

У любой химической реакции наблюдаются два противоположных тенденции: с одной стороны тенденция к достижению minэнергии путем образования более крупных частиц. Это описывается функциейН. С другой стороны тенденция к разбрасыванию частиц в большом объеме. Это описывается функцией состоянияS. Значит, самопроизвольному процессу способствует уменьшение энтальпии и увеличение энтропии.

Возможны 2 случая:

1. Н > 0

2. H< 0

Для оценки взаимного влияния 2-х этих функции введена функция G-свободная энергия Гиббса

Если есть функция состояния системы, то она, так же как и

не зависит от пути перехода из одного состояния в другое, а зависит от природы веществ и физического состояния.

Величины изменения свободной энергии Гиббса для ряда соединений, образованных из простых веществ при стандартных условиях даны в таблице. Измеряется в кДж/моль; ккал/моль. Gсильно зависит от температуры в отличии оти.

Величину Gпринято называть энергией Гиббса в честь американского

физика Д. У. Гиббса одного из основоположников современной химической

термодинамики.