Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Шпоры по физиологии спорта

.docx
Скачиваний:
104
Добавлен:
18.02.2016
Размер:
92.97 Кб
Скачать

 

16. Обмен белков в покое и при мышечной работе, его регуляция.Белки — это сложные высокомолекулярные соединения, содержащие в отличие от жиров и углеводов азот. Они состоят из 20 различных аминокислот, не обладающих видовой специфичностью. Из всосавшихся в кишечнике аминокислот строятся специфические для каждого индивидуума белки. Аминокислоты делятся на заменимые и незаменимые. Заменимые аминокислоты (гликокол, аланин, цистеин и др.) могут синтезироваться в организме. Десять незаменимых аминокислот (аргинин, лейцин, лизин, триптофан и др.) не синтезируются в организме и обязательно должны поступать с пищей. Наиболее полноценными по аминокислотному составу продуктами являются белки яйца, молока, мяса. Белки растительного происхождения биологически менее полноценны, В распоряжении организма должны быть все аминокислоты в определенном соотношении и количестве, иначе белок не может быть синтезирован. Белки являются основным пластическим материалом, т. е. основной частью клетки. Они принимают участие в обеспечении большинства функций организма. Так, гемоглобин переносит О2 и СО2, фибриноген обусловливает свертывание крови, нуклеопротеиды обеспечивают передачу наследственных признаков. Велико значение белков в водном обмене. В отличие от жиров и углеводов белок не может откладываться в запас. Для характеристики белкового обмена и расчета потребностей организма в белке обычно пользуются определением азотистого баланса для чего необходимо знать количество поступившего белка и количество расщепленного в организме, т. е. установить и сопоставить приход и расход белка. Белок поступает с пищей, а неусвоенная его часть выводится с калом. Следовательно, если из количества белка в пище вычесть белок, содержащийся в кале, то разность составит приход белка. Потребность в белках значительно больше у растущего организма, при беременности, а также после тяжелой болезни. Потребность в белках зависит также от профессии и климатических условий. Для взрослого потребность в белке составляет 1,5 г на 1 кг массы тела, для ребенка грудного возраста — 3,0—3,5 г, для ребенка 10 лет —2,5 г.

20-21.Выполнение организмом любой физиологической функции представляет собой работу, во время которой образуется тепло. Оно рассеивается в тканях и вызывает повышение температуры отдельных органов. Человек и некоторые животные называются теплокровными, так как у них температура тела поддерживается на постоянном уровне и не зависит от колебаний температуры внешней среды. У других животных температура тела зависит от температуры внешней среды. Они называются холоднокровными. Нормальная температура тела человека, измеренная в подмышечной впадине, колеблется в пределах 36,5—37°. Температура тела ниже 24° и выше 43° для человека смертельна. Постоянство температуры тела имеет большое значение для процессов обмена веществ и ферменты, с помощью которых протекают биохимические и физиологические процессы, сохраняют активность при температуре 35-40°. Обмен тепла между разными органами осуществляется кровью, которая переносит его от более нагретых органов к менее нагретым. Самая высокая температура наблюдается в печени (38—38,5°), в мозгу, почках, мышцах и других внутренних органах, наименьшая — коже конечностей (на стопе и кисти 25—30°). Эти различия изъясняются неодинаковой интенсивностью энергетического обмена и относительно большей теплоотдачей наружных областей тела. Избыток тепла выводится из организма в результате сложных физиологических процессов в окружающую среду, температура которой может быть и выше и ниже температуры тела. В условиях, когда теплоотдача превышает его образование, в организме усиливается образование тепла за счет усиления окислительно-восстановительных процессов. Постоянство температуры тела поддерживается путем теплоотдачи и теплообразования. Если теплообразование равно теплоотдаче, то температура тела сохраняется на постоянном уровне. Если теплопродукция преобладает над теплоотдачей, то температура тела повышается. Такое состояние в условиях покоя может возникнуть, когда температура воздуха превышает 60°. В этих условиях человек не способен сохранять тепловой баланс, в организме накапливается тепло и повышается температура тела. Когда образование тепла меньше теплоотдачи, температура тела понижается.Теплоотдачу при низкой температуре окружающей среды человек может уменьшать, используя теплозащитные свойства одежды. Человек может в теплой одежде эффективно работать даже при очень сильных морозах (до —50°). Приспособление организма к различным внешним условиям осуществляется при помощи нервной системы. В тканях организма имеются терморецепторы, одни их которых реагируют на тепло, другие — на холод. Сигналы от них поступают в центральную нервную систему, которая регулирует процессы теплообразования и теплоотдачи. Регуляция температуры тела осуществляется по множеству величин. К ним относятся: уровень температуры, скорость ее изменения и различия температуры в разных областях. В регуляции температуры тела принимают участие и железы внутренней секреции. Гормоны щитовидной железы и мозгового слоя надпочечников вызывают повышение теплопродукции в организме.

22.ЦНСфункционально объединяет клетки, ткани, отдельные органы и системы органов в одно целое. Она осуществляет регуляцию всех процессов жизнедеятельности, обеспечивает связь организма с окружающей средой и приспособление к ее постоянным изменениям. С функциями ЦНС связаны процессы, лежащие в основе поведения и психической деятельности человека. ЦНС — это сложно организованная высокоспецифичная система быстрой передачи информации, ее обработки и управления. Различные нейроны представляют собой единую структуру. Активность нервных клеток выражается в генерации и передаче нервных импульсов, которые служат общим механизмом взаимодействия различных отделов ЦНС. Нервная система воспринимает огромное число импульсов от различных сенсорных систем, интегрирует всю эту информацию, анализирует ее и дает команду исполнительным органам, обеспечивая адекватную ответную реакцию. В мозге находятся чувствительные центры, анализирующие изменения, которые происходят как во внешней, так и внутренней среде. Основной формой деятельности ЦНС является рефлекс. Рефлекс — это ответная реакция организма на раздражение рецепторов, осуществляемая при участии ЦНС. Структурной основой рефлекса является рефлекторная дуга — нейронная цепь, по которой проходит нервный импульс от рецептора к исполнительному органу (мышце, железе). В состав рефлекторной дуги входят: 1) воспринимающий раздражение рецептор; 2) чувствительное (афферентное) волокно (аксон чувствительного нейрона), по которому возбуждение передается в ЦНС; 3) нервный центр, в который входят один или несколько вставочных нейронов; 4) эфферентное нервное волокно (аксон эфферентного нейрона), по которому возбуждение направляется к органу (торможения, распределения, суммация, принципы координации). В сложном нервном механизме формирует двигательных актов и управления важное место принадлежит информации, получаемой из внешней среды и от различных частей тела и систем организма. Сигналы обратных связей, являясь важнейшим фактором корреляции движений, поступают ЦНС через органы чувств и поэтому называются также сенсорными корреляциями. Различают: а) Внутренние обратные связи, которые сигнализируют о характере работы мышц, сердца и др систем организма, б) внешние, несущие инф о деятельности из внешней среды. Внутренние обратные связи осуществляют преимущественно через двигательную (проприорецептивную, вестибулярную и интероцептивну сенсорные системы), внешние - через зрительную, слуховую и тактильную. Существенное значение для совершенствования техники движений имеет итак называемые сторонние информации, получаемые от тренера в результате наблюдений за движениями. Особую ценность данные имеют тогда, когда это инф является срочной, те испытания для улучшения техники движения непосредственно во время выполнения упр. или при последующих повторениях его. Факторы, предшествующие программированию движений: 1) Мотивация 2)Память (Предшествующий опыт оказывает сильнейшее влияние на оценку любых событий и ситуаций) 3)Обстановочную инф 4) Пусковую инф (Сигналы, ситуации определенного характера)

23.Синапсы, особенности их строения, механизм проведения возбуждения. Возбуждающий и тормозной постсинаптический потенциалы, механизм возникновения, их роль в возникновении импульсного ответа нейрона.

Синапсы как важное звено во взаимодействиях нейронов между собой и с рабочими органами. Строение синоптических контактов и механизм проведения возбуждения с помощью медиаторов. Синапсы – специальные образования, через которые происходит взаимодействие нейронов между собой. Они образуются концевыми разветвлениями нейрона на теле или отростках другого нейрона. Чем больше синапсов на нервной клетке, тем больше она воспринимает различных раздражений. В структуре синапса различают 3 элемента: 1. Пресинаптическая мембрана (образована утолщением мембраны конечной веточки аксона); 2. синаптическая щель между ней-ронами; 3. постсинаптическая мемб-рана (утолщение прилегающей повер-хности следующего нейрона. В большинстве случаев передача влияния одного нейрона на другой осуществляется химическим путем. В пресинаптической части контакта имеются синаптические пузырьки, которые содержат специальные в-ва – медиаторы. Ими могут быть ацетилхолин (спинной мозг, вегетативные узлы), норадреналин (симпатические нервные волокна, гипоталамус), некоторые аминокислоты. Приходящие в окончания аксона нервные импульсы вызывают опорожнение синаптических пузырьков и выведение медиатора в синаптическую щель. Синапсы могут быть возбуждающими и тормозящими.

24.Спинной мозг расположен в костном позвоночном канале. Имеет вид белого шнура диаметром около 1 см и длиной 40-45 см. На передней и задней сторонах имеются глубокие продольные борозды. Спинной мозг состоит из 31 сегмента, от каждого из которых отходит пара смешанных спинномозговых нерва, имеющих по паре корешков: передний (аксоны двигательных нейронов) и задний (аксоны чувствительных нейронов). Сегмент спинного мозга – участок спинного мозга, соответствующий двум парам корешков спинномозговых нервов (паре спинномозговых нервов), отходящих от данного сегмента. Различают 8 шейных, 12 грудных, 5 поясничных, 5 крестцовых и 1 копчиковый сегменты. Каждый сегмент имеет связь с определенными внутренними органами, скелетными мышцами и кожей, образуя так называемый метамер (дерматом). Задние корешки являются афферентными, чувствительными, центростремительными. Передние корешки – эффекторными, двигательными, центробежными. Шеррингтон показал, что каждый сегмент спинного мозга иннервирует 3 метамера тела и получает афферентные импульсы от трех метамеров, а каждый метамер иннервируется из трех сегментов спинного мозга и передает сигналы в три спинномозговых сегмента. Тела нейронов, образующие серое вещество, находятся в центральной части спинномозгового тяжа, вокруг расположено белое вещество, образованное нервными волокнами. В сером веществе выделяют передние, задние и боковые рога (слева и справа), в соответствии с которыми белое вещество делится на передний, задний и боковые столбы. В задние рога по задним корешкам поступают от периферических рецепторов волокна чувствительных нейронов, тела которых находятся в спинальных межпозвоночных ганглиях. Эти волокна заканчиваются на вставочных нейронах (интернейронах), тела которых расположены в задних рогах. В передних рогах окончания вставочных нейронов подходят к мотонейронам, от которых по передним корешкам отходят эфферентные окончания к исполнительным органам. В боковых рогах происходит переключение афферентных волокон на нейроны вегетативной нервной системы. На протяжении спинного мозга выделяют два утолщения – шейное (сегменты, иннервирующие верхние конечности) и пояснично-крестцовое (сегменты, иннервирующие нижние конечности и тазовые органы). В утолщениях спинного мозга соматические нейроны более крупные, количество их больше, в каждом корешке этих сегментов больше нервных волокон и они более толстые. Общее количество нейронов спинного мозга примерно 13 миллионов, из них 3% составляют мотонейроны и около 97% – вставочные (интернейроны)

25.Функциональная организация вегетативной НС. Роль симпатической и парасимпатической НС в регуляции деятельности СС и дыхательной систем, мобилизации энерго ресурсов организма, повышении работоспособности скелетных мышц. Значение симпатических влияний в развитии стрессовых состояний и адаптации организма к напряженной работе в различных условиях внешней среды. Вегетативной НС называют совокупность эфферентных нервных клеток спинного и головного мозга, а также клеток особых узлов (ганглиев), иннервирующих внутренние органы. У эфферентных путей, входящих в рефлекторные дуги вегетативных рефлексов, является двухнейронное строение. Вегетативная НС делится на симпатический и парасимпатический отделы. Высшим регулятором вегетативных ф-ций является гипоталамус; кроме него, нейроны, расположенные в самих органах или в симпатических узлах, могут осуществлять собственные рефлекторные реакции без участи ЦНС – периферические рефлексы. С участием симпатической НС протекают многие важные рефлексы в организме, направленные на обеспечение его деятельного состояния, в т.ч. – его двигательной деятельности. К ним относятся рефлексы расширения бронхов, учащения и усиления сердечных сокращений, расширения сосудов сердца и легких при одновременном сужении сосудов кожи и органов брюшной полости (обеспечение перераспределения крови), выброс депонированной крови из печени и селезенки, расщепление гликогена до глюкозы в печени (мобилизация углеводных источников энергии), усиление деятельности желез внутренней секреции и потовых желез. Трофическое влияние симпатических нервов на скелетные мышцы улучшает их обмен в-в и функциональное состояние, снимающее утомление. Симпатический отдел НС мобилизует скрытые функциональные резервы организма, активирует деятельность мозга, повышает защитные реакции. При стрессовых состояниях симпатические влияния имеют большое значение для адаптации организма к напряженной работе, различным условиям внешней среды. Парасимпатическая НСосуществляет сужение бронха, замедление и ослабление сердечных сокращений; сужение сосудов сердца; пополнение энергоресурсов (синтез гликогена в печени и усиление процессов пищеварения); усиление процессов мочеобразования в почках и обеспечение акта мочеисспускания (сокращение мышц мочевого пузыря и расслабление его сфинктера) и др. Оказывает пусковые влияния; сужение зрачка, бронхов, включение деятельности пищеварительных желез. Парасимпатический отдел обеспечивает восстановление различных физиологичесских показателей, резко измененных после напряженной мышечной работы, пополнение израсходованных энергоресурсов. Медиатор парасимпатической системы ацетилхолин, снижая чувствительность адренорецепторов к действию адреналина и норадреналина, оказывает определенное антистрессовое влияние. Регулирует функциональное состояние, поддерживает гомеостаз.

 

26.Двигательная сенсорная система. Проприорецепторы (мышечные веретена, сухожильные и суставные рецепторы), механизм рецепции. Корковое представительство. Роль в управлении движениями.

Двигательная сенсорная система (ДСС). Общая схема строения (отделы), ф-ции. Проприорецепторы, особенности строения и ф-ции. Значение ДСС при занятиях физ. упр. ДСС служит для анализа состояния двигательного аппарата – его движения и положения. ДСС состоит из 3-х отделов: 1. Периферический отдел, представленный проприорецепторами, расположенными в мышцах, сухожилиях и суставных сумках. 2. Проводниковый отдел начинается биполярными клетками (первыми нейронами), тела которых расположены вне ЦНС – в спинномозговых узлах, один их отросток связан с рецепторами, другой входит в спинной мозг и передает проприоцептивные импульсы ко вторым нейронам в продолговатый мозг и далее к третьим нейронов – релейным ядрам таламуса (в промежуточный мозг). 3. Корковый отдел находится в передней центральной извилине коры больших полушарий. Кпроприорецептарам относятся мышечные веретена, сухожильные органы и суставные рецепторы (рецепторы суставной капсулы и суставных связок). Все это механорецепторы, раздражителем является их растяжение. Мышечные веретена прикрепляются к мышечным волокнам параллельно – один конец к сухожилию, другой – к волокну. Каждое веретено покрыто капсулой, которая в центральной части расширяется и образует ядерную сумку. Внутри веретена содержится несколько (от 2 до 14) тонких внутриверетенных (интрафузальных) мышечных волокон. Интрафузальные волокна делятся на 2 типа: 1. длин-ные, толстые, с ядрами в ядерной сумке, которые связаны с наиболее толстыми и быстропроводящими афферентными нервными волокнами – они информируют о динамическом компоненте движения (скорости изменения длины мышцы). 2. короткие, тонкие, с ядрами, вытянутыми в цепочку, информирующие о статическом компоненте (удерживаемой в данный момент длине мышцы). ЦНС может тонко регулировать чувствительность проприорецепторов. Раз-ряды мелких гамма-мотонейронов спинного мозга вызывают сокращение интрафузальных мышечныых волокон по обе стороны от ядерной сумки веретена. Сухожильные рецепторы оплетают тон-кие сухожильные волокна, окруженные капсулой и информируют нервные центры о степени напряжения мышц и скорости его развития. Суставные рецепторы информируют о положении отдельных частей тела в пространстве и относительно друг друга. Сигналы от суставных рецепторов вызывают заметную реакцию в коре больших полушарий и хорошо осознаются.

27.Представление И.П. Павлова о ВНД.Условные рефлексы, их отличия от безусловных. Методики исследования и условия образования условных рефлексов. Биологическое значение условных рефлексов. Механизмы и фазы образования условных рефлексов. Разновидности условных рефлексов. Различия условных (У) и безусловных (Б) рефлексов: 1. Б – врожденные, У – приобретенные р-ции. 2. Б – постоянно, У – временно существующие р-ции. 3. Б – видовые, У – индивидуальные рефлексы. 4. Б – имеются готовые, У – образуются новые рефлекторные дуги. 5. Б – осуществляется всеми отделами, У – осущ-ся ведущими отделами ЦНС. Павловым была разработана объективная методика изучения приобретаемых или условных рефлексов, которая основывалась на изоляции обследуемого организма от посторонних раздражителей и на точной регистрации сигнала и ответа на него. Исследования проводились на собаках в изолированных камерах. Напр., после светового сигнала собаке давалась пища, и регистрировалось выделение слюны. После ряда сочетаний этих сигналов уже одно только включение света вызывало выделение слюны, т.е. был выработан новый рефлекс, биологический смысл которого заключался в подготовке организма к приему пищи. Механизм образования условного рефлекса заключается в формировании новой рефлекторной дуги. Фазы выработки усл. рефлексов: 1. генерализация (обобщенное восприятие сигнала, р-ция на любой сходный сигнал), основа – иррадиация возбуждения в коре больших полушарий. 2. Концентрация возбуждения (р-ция на конкретный сигнал) за счет вырабатываемого условного торможения на посторонние сигналы. 3. стабилизация (упрочение условн. рефлекса). Разновидности условных рефлексов: 1. Натуральные – на безусловные раздражители (запах мяса) и искусственные – на посторонние сигналы (запах мяты). 2. Наличные и следовые (на условный сигнал, непосредственно предшествующий безусловному подкреплению, и на его следовое влияние). 3. Положительные (с активным про-явлением ответной р-ции) и отрицательные (с ее торможением). 4. Условные рефлексы на время – при ритмической подаче условных сигналов ответная р-ция появляется через заданный интервал даже при отсутствии очередного сигнала. 5. Условные рефлексы первого порядка – на один предшествующий условный раздражитель, и более высоких порядков, когда безусловному под-креплению предшествует сочетание 2-х последовательно подающихся сигналов (свет + звук) – у.р. второго порядка, (свет + звук + касалка) – у.р. третьего порядка и т.д. В основном вырабатываются у собак – 3-го порядка, у обезьян – 4-го, у грудного ребенка – 5-6-го, у взрослого человека – 20-го. Внешнее и внутренне торможение условных рефлексов. Двигательный динамический стереотип. Учение Павлова о типах НС человека и животных. Первая и вторая сигнальные системы, их соотношение у различных индивидов. Учет этих особенностей у спортсменов. По своему происхождению торможение условных рефлексов может быть безусловным (врожденным) и условным (выработанным в течение жизни). К безусловному торможению относят охранительное или запредельное торможение, возникающее при чрезмерно сильном или длительном раздражении, и внешнее торможение условных рефлексов посторонними для центров условного рефлекса раздражителями (напр., нарушение непрочного двигательного навыка в условиях соревнований). Условное торможение вырабатывается при отсутствии подкрепления условного сигнала. В качестве основных свойств НС, Павлов рассматривал силу возбуждения и торможения, их уравновешенность и подвижность.

 

28.Типы мышц и свойства поперечнополосатых мышц. Двигательные единицы, их виды (большие и малые, медленные и быстрые) и особенности их деятельности при динамической работе и статическом усилии.

Существует три типа мышц: поперечно-полосатые скелетные мышцы, поперечно-полосатая сердечная мышца и гладкие мышцы. Мышцы обладают следующими физиологическими свойствами: 1) возбудимостью, т.е. способностью возбуждаться при действии раздражителей; 2) проводимостью — способностью проводить возбуждение; 3) сократимостью — способностью изменять свою длину или напряжение при возбуждении; 4) растяжимостью — способностью изменять свою длину под действием растягивающей силы; 5) эластичностью — способностью восстанавливать свою первоначальную длину после прекращения растяжения. МДЕ включают маленькие мотонейроны с тонким аксоном. М самих МДЕ 10-12 волокон. Они входят во все мелкие мышцы: лицевые, пальцев рук, ног и т.п. БДЕ крупные мотонейроны с толстым аксоном которые иннервируют до нескольких тысяч мышечных волокон входящих в состав больших мышц туловища и конечностей. С функциональной точки зрения ДЕ типов М и Б мотонейронов. Чем меньше мотонейрон, тем выше возбудимость и меньше возбуждение. М – мотонейрон – это малые мотонейроны. Достигают максимальной импульсации при 50% от максимальной произвольной силы. Б – мотонейрон, подключающийся при высоких уровнях напряжения мышц. Скорость проведения импульсов в медленных меньше за счёт толщины. Совокупность мотонейрона и иннервируемых им мышечных волокон - Двигательные (нейромоторной) единицы. Число мышечных волокон двигательной единицы невелики в мышцах, приспособленных для быстрых движений, от нескольких мышечных волокон до несколько десятков их. Наоборот, в мышцах осуществляются медленные двигательные единицы велики, и включаются сотни и тысячи мышечных волокон. При сокращении мышцы в натуральных условиях можно зарегистрировать электрическую активность с помощью игольчатых или накожных электродов. с функциональной точки зрения двигательные единицы разделяют на медленные (Устойчивый уровень импульсации наблюдается уже при очень слабых статических сокращениях мышц, при поддержании позы. Медленные мотонейроны способны поддерживать длительный заряд без заметного снижения частоты импульсации на протяжении длительного времени. Поэтому их называют неутомляемыми мотонейронами. В окружении медленных мышечных волокон богатая капиллярная сеть, позволяющая получать большое количество крови из кислорода) и быстрые (состоят из быстрых мотонейронов и быстрых мышечных волокон .Они включаются в активность только для обеспечения относительно больших по силе статических и динамических сокращений мышц, а также в начале любых сокращений ,чтобы увеличить скорость нарастания напряжения мышцы или сообщить двум, движущейся части тела необходимое ускорение. Чем больше скорость и сила движений, тем больше участие быстрых двигательных единиц.) Быстрые мотонейроны относятся к утомляемым - они не способны к длительному поддержанию высококачественного заряда. Быстрые мышечные волокна более толстые, содержат больше миофибрилл, обдают большей силой, чем медленные волокна. Активность окислительных ферментов в быстрых волокнах ниже, чем в медленных, однако активность гликолетических ферментов, запасы гликогена выше. Эти волокна не обладают большой выносливостью и более приспособлены для мощных, но относительно кратковременных сокращений. Активность быстрых волокон имеет значение для выполнения кратковременной высокоинтенсивной работы, например бега на короткие дистанции.

30.Механизм и энергетика мышечного сокращения. Мышечное волокно – это вытянутая клетка (диаметр 10-100 мкм, длина 10-12 см). Состав волокна: оболочка – сарколемма; жидкое содержимое – саркоплазма; энергитические центры – митохондрии; белковое депо – рибосомы; сократительные элементы – миофибриллы; замкнутая система про-дольных трубочек и цистерн. Миофибриллы – тонкие волокна (диам. 1-2 мкм, длина 2-2,5 мкм), содержащие 2 вида сократительных белков: 1. Тонкие нити актина; 2. Толстые нити миозина. Миофибриллы разделены Z-мембранами на отдельные участки саркомеры. Нити актина составляют около 20% сухого веса миофибрилл. Актин состоит из 2 форм белка: 1. глобулярной формы – в виде сферических молекул; 2. палочковидных молекул тропомиозина, скрученных в виде двунитчатых спиралей в длинную цепь. Миозин составлен из уложенных параллельно белковых нитей. При работе мышц хим. энергия превращиеся в механическую. Для процессов сокращения и расслабления мышц потребляется энергия АТФ. Расщепление АТФ с отсоединением одной молекулы фосфата и образованием аденозиндифосфата (АДФ) сопровождается выделением 10 ккал энергии на 1 моль. Запасы АТФ в мышцах невелики, хватает на 1-2 с работы. Кол-во АТФ в мышцах не может изменяться, т.к. при отсутствии АТФ в мышцах развивается контрактура (не работает кальциевый насос и мышцы не в состоянии расслабляться), а при избытке – теряется эластичность. Для продолжения работы требуется постоянное восполнение запасов АТФ. Восстановление АТФ в анаэробных условиях происходит за счет распада креатинфосфата и глюкозы (р-ции гликолиза), в аэробных условиях – за счет р-ции окисления жиров и углеводов. При единичном надпороговым раздражении двигательного нерва или самой мышцы возбуждение мышечного волокна сопровождается одиночным сокращением. Эта форма механич. р-ции состоит из 3 фаз: латентного или скрытого периода, фазы сокращения и фазы расслабления. Если интервалы между нервными импульсами короче, чем длительность одиночного сокращения, то возникает явление супер-компенсации – наложение механических эффектов мышечного волокна друг на друга и наблюдается сложная форма сокращения – тетанус. Различают 2 формы тетануса: 1. зубчатый тетанус – происходит попадание каждого следующего нервного импульса в фазу расслабления отдельных одиночных сокращений, и 2. сплошной или гладкий тетанус – когда каждый следующий импульс попадает в фазу сокращения. Одиночное сокращение – более слабое и менее утомительное. Сокращение целой мышцы зависит от формы сокращения отдельных ДЕ и их координации во времени. При обеспечении длительной, но не очень интенсивной работы, отдельные ДЕ сокращаются попеременно. Отдельные ДЕ могут развивать как одиночные, так и титанические сокращения, что зависит от частоты нервных импульсов. Для мощного кратковременного усилия (поднятие штанги) требуется синхронизация активности отдельных ДЕ, т.е. одновременное возбуждение практически всех ДЕ. Это требует одновременной активации соответствующих нервных центров и достигается в результате длительной тренировки.