Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Текстовый документ OpenDocument.doc
Скачиваний:
76
Добавлен:
22.05.2015
Размер:
271.36 Кб
Скачать

5.2.2. Сглаживание эскизной линии трассы

Сплайн-трассирование

В условиях автоматизированного проектирования, когда любое проектное решение требует формализованного представления информации в числовом или аналитическом виде, а оценка этих решений связана, как правило, с функциональным анализом, значимость выбора подходящих интерполирующих и аппроксимирующих функций возрастает. Наиболее подходящими функциями для этого являются сплайны как универсальный математический аппарат для описания, хранения, преобразования, анализа и представления геометрических форм элементов, в первую очередь, трасс проектируемых автомобильных дорог (см. гл. 2).

Ряд программных разработок для автоматизированного трассирования автомобильных дорог в плане и продольном профиле на основе сплайнов нашли применение в проектной практике. Заметим, что сплайн-трассы не связаны с тангенциальным ходом и их разбивка на местности может осуществляться от произвольных базисов (см. рис. 5.36).

Рис. 5.36. Возможные схемы разбивки сплайн-трасс

Постановка задачи трассирования на основе сплайнов должна предполагать следующее: вершины интерполяции эскизной трассы, а в случае реконструкции – существующей трассы, назначаются приближенно (с допуском) и точное их местоположение вычисляется по определенным закономерностям, связанным с минимизацией функционала сглаживающих сплайнов.

Трассирование сплайнами еще не получило широкого практического применение, однако пилотные проекты дорог со сплайн-трассами уже реализованы в Германии, Англии, России и показали, что такие дороги обладают высокими потребительскими качествами.

Алгоритм выработки проектного решения по проложению сплайн-трассы в плане аналогичен оптимизации проектной линии в продольном профиле на основе сплайнов (см. гл. 6).

Метод опорных элементов

Метод основан на принципе аналитической увязки смежных опорных элементов (круговых прямых и кривых), которые являются определяющими как при графической проработке трассы, так и при ее аналитическом расчете

Приняты три вида опорных элементов (рис. 5.37): фиксированные (а), полуфиксированные (б) и свободные (с).

Положение фиксированного опорного элемента однозначно определено в заданной системе координат.

Для полуфиксированного опорного элемента допускается в процессе расчета поворот элемента вокруг заданной точки.

У свободного опорного элемента определена только конфигурация, но никак не ограничивается его положение в заданной системе координат.

Рис. 5.37. Способы задания опорных элементов

а) фиксированные; б) полуфиксированные; в) свободные

В целях обеспечения возможности более гибкого варьирования трассы предусмотрены различные расчетные схемы, охватывающие всевозможные комбинации элементов трассы, которые могут встретиться при проектировании. Некоторые из них приведены на рис. 5.38.

SHAPE \* MERGEFORMAT

Рис. 5.38. Примеры схем сопряжения опорных элементов

Проектирование выполняют на топографической основе в координатах. Сначала трассу укладывают эскизно, то есть от руки или с помощью гибкой линейки. Анализируют эскизную линию и устанавливают предварительную последовательность опорных элементов. Далее назначают схемы увязки этих элементов и автоматизировано выполняют их расчет. В качестве связующих элементов применяют клотоиды, отрезки клотоид и их комбинации.

В методике опорных элементов предусмотрена возможность перехода на раздельное трассирование по направлениям движения, как на прямолинейных, так и на криволинейных участках трасс. Это позволяет получить экономичные решения, обеспечить плавный вид дороги в местах расхождения и соединения полос движения, исключить возможность неправильного ориентирования водителя относительно дальнейшего направления движения.