Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ТКМ шпоры

.doc
Скачиваний:
95
Добавлен:
15.05.2015
Размер:
11.14 Mб
Скачать

73 ХАРАКТЕРИСТИКА МЕТОДА ШЛИФОВАНИЯ

Шлифованием называют процессы обработки заготовок резанием режущим инструментом, рабочая часть которого содержит частицы абразивного материала. Такой режущий инструмент называют абразивным. Измельченный абразивный материал (абразивные зерна), твердость которого превышает твердость обрабаты­ваемого материала и который способен в измельченном состоянии осуществлять обработку резанием, называют шлифо­вальным. разли­чают алмазные, эльборовые, электроко­рундовые, карбидкремниевые и другие абразивные инструменты (шлифовальные круги). Абразивные зерна расположены в круге беспорядочно и удерживаются свя­зующим материалом. Шлифо­вальные крути срезают стружки на очень больших скоростях - от 30 м/с и выше (порядка 125 м/с). Процесс резания каж­дым зерном осуществляется почти мгно­венно. Обработанная поверхность пред­ставляет собой совокупность микроследов абразивных зерен и имеет малую шерохо­ватость. Часть зерен ориентирована так, что резать не может. Абразивные зерна могут также оказы­вать на заготовку существенное силовое воздействие. Происходит поверхностное пластическое деформирование материала, искажение его кристаллической решетки. Деформирующая сила вызывает сдвиг одного слоя атомов относительно другого. Вследствие упругопластического дефор­мирования материала обработанная по­верхность упрочняется. Но этот эффект оказывается менее ощутимым, чем при обработке металлическим инструментом.

Шлифование применяют для чистовой и отделочной обработки деталей с высо­кой точностью. Для заготовок из закален­ных сталей шлифование является одним из наиболее распространенных методов формообразования. С развитием малоот­ходной технологии доля обработки метал­лическим инструментом будет умень­шаться, а абразивным - увеличиваться.

Сведения о выпускаемых шлифоваль­ных материалах, связках и области их при­менения приведены в справочной ли­тературе.

3. ОСНОВНЫЕ

СХЕМЫ ШЛИФОВАНИЯ

Формы деталей современных машин представляют собой сочетание наружных и внутренних плоских, круговых цилинд­рических и круговых конических поверх­ностей. Другие поверхности встречаются реже. В соответствии с формами деталей машин наиболее распространены схемы шлифования, приведенные на рис. 6.79.

Для всех технологических способов шлифовальной обработки главным движе­нием резания является вращение круга. При плоском шлифовании возврат­но-поступательное перемещение заготов­ки необходимо для обеспечения продоль­ной подачи (рис. 6.79, а). Для обработки поверхности на всю ширину заготовка или круг должны иметь движе­ние поперечной подачи. Это движе­ние происходит прерывисто (периодиче­ски) при крайних положениях заготовки в конце продольного хода. Периодически происходит и движение подачи на глубину резания. Это перемещение осу­ществляется также в крайних положениях заготовки, но в конце поперечного хода.

При круглом шпифовании (рис. 6.79, б) движение продольной подачи обеспечива­ется возвратно-поступательным переме­щением заготовки. Вращение заго­товки является движением круговой подачи.

В автоматизированных шлифовальных станках цикл работы станка включает пе­риодический вывод круга из зоны шлифо­вания, его автоматическую правку и пере­мещение круга к изделию на величину снятого при правке слоя абразива.

7. ОБРАБОТКА ЗАГОТОВОК НА КРУГЛОШЛИФОВАЛЬНЫХ СТАНКАХ

Конструкция круглошлифовальных станков и их компоновка подчиняются основным схемам шлифования. Кругло-шлифовальный станок состоит из сле­дующих основных узлов (рис. 6.80). На универсальных станках ка­ждую из бабок можно повернуть на опре­деленный угол вокруг вертикальной оси и закрепить для последующей работы. Про­стые станки снабжены неповоротными бабками. У врезных станков отсутствует продольное движение подачи стола, а процесс шлифования ведется по всей дли­не заготовки широким шлифовальным кругом с движением поперечной подачи.

Возвратно-поступательное перемеще­ние стола для движения продольной пода­чи производят с помощью гидроцилиндра и поршняКогда круг износится им

73п

Рис. 6.80. Круглошлифовальный станок

диаметр его уменьшится, используют дру­гую пару шкивов, и скорость движения резания увеличится.

При шлифовании наружных цилинд­рических и конических поверхностей об­рабатываемая заготовка может быть уста­новлена в центрах станка, цанге, патроне или специальном приспособлении.

Скорость вращения заготовки при шлифовании в зависимости от ее диаметра назначается от 10 до 50 м/мин, скорость вращения шлифовального круга составля­ет у многих станков 30 м/с, а при использовании более прочных кругов достигает 50 ... 60 м/с. Продольная, поперечная по­дачи, глубина резания устанавливаются в зависимости от способов шлифования.

Круглое шлифование цилиндрических поверхностей может быть выполнено по одной из четырех схем (рис. 6.81).

При шлифовании с продольной подачей (рис. 6.81, а) заготовка вращается равно­мерно и совершает возвратно-поступательные движения. В кон­це каждого хода заготовки шлифовальный круг автоматически перемещается на $п, и при следующем ходе срезается новый слой металла определенной глубины, пока не будет достигнут необходимый размер детали

Рис. 6.81. Схемы обработки на круглошлифовальных станках

73пп Производительный способ обработки -врезное шлифование (рис. 6.81, б) - при­меняют при обработке жестких заготовок в тех случаях, когда ширина шлифуемого участка может быть перекрыта шириной шлифовального круга. Этот же метод использу­ют при шлифовании фасонных поверхно­стей и кольцевых канавок. Шлифовальный круг заправляют в соответствии с формой поверхности или канавки.

Глубинным шлифованием (рис. 6.81, в) за один проход снимают слой материала на всю необходимую глубину. На шлифо­вальном круге формируют конический участок длиной 8 ... 12 мм. В ходе шли­фования конический участок удаляет ос­новную часть срезаемого слоя, а цилинд­рический участок зачищает обработанную поверхность. Движение поперечной пода­чи отсутствует.

Шлифование уступами (рис. 6.81, г) -это сочетание методов, представленных на рис. 6.81, а, б. Процесс шлифования со­стоит из двух этапов. На первом этапе шлифуют врезанием с движением подачи Ц, , передвигая периодически стол на

0,8 ... 0,9 ширины круга (показано штри­ховой линией). На втором этапе делают несколько ходов с движением продольной подачи й5 для зачистки поверхности

при выключенном движении подачи .

При измерении размеров шлифуемых поверхностей приходится останавливать станок, что связано со значительной за­тратой времени. В современной практике широко используют контрольные устрой­ства, измеряющие размеры обрабатывае­мых поверхностей в процессе шлифования -активный контроль.

2. РЕЖИМ РЕЗАНИЯ. СИЛЫ РЕЗАНИЯ

Для формообразования любой поверх­ности методом шлифования необходимы вращательное движение круга и относи­тельное перемещение по одной из коорди­натных осей (рис. 6.77). Перемещения вдоль осей могут быть заменены враща­тельным движением вокруг оси.

Основные элементы режима резания -скорость главного движения резания, по­дача и глубина резания. Для рационально­го ведения процесса шлифования необхо­димо выбирать их оптимальные значения

Движениями подач являются пере­мещения заготовки или инструмента вдоль или вокруг координатных осей. Вы­ражения и размерности подач определя­ются схемами шлифования. Глубина реза­ния (мм) определяется толщиной слоя ма­териала, срезаемого за один проход

Рис. 6.78. Сила резания при шлифовании

Оптимальные режимы резания выби­рают по справочным данным.

Для расчета элементов шлифовальных станков, конструирования приспособле­ний для работы на них и оценки точности обработки необходимо знать силы реза­ния.

Мощность электродвигателя, приво­дящего во вращение шлифовальный круг, кВт,

Шлифование является наиболее рас­пространенным методом уменьшения ше­роховатости поверхностей. Качественные зависимости высотного параметра шеро­ховатости от режима резания

74 АБРАЗИВНО-ЖИДКОСТНАЯ ОТДЕЛКА

Отделка объемно-криволинейных, фа­сонных поверхностей обычными метода­ми вызывает большие технологические трудности. Метод абразивно-жидкостной отделки позволяет решить задачу сравни­тельно просто. На обрабатываемую поверхность, имеющую следы предшествующей обра­ботки, подают струи антикоррозионной жидкости со взвешенными частицами аб­разивного порошка (рис. 6.92, а). Водно-абразивная суспензия перемещается под давлением с большой скоростью. Частицы абразива ударяются о поверхность заго­товки и сглаживают микронеровности. Интенсивность съема обрабатываемого материала регулируется зернистостью порошка, давлением струи и углом р. Из­меняя скорость полета и размер свобод­ных абразивных зерен, можно увеличить степень пластической деформации и ше­роховатость поверхности.

В качестве абразива часто применяют электрокорунд. В суспензии содержится 30 ... 35 % абразива (по массе).

Наибольший съем металла получается при угле Р = 45°

ОБРАБОТКА ПЛАСТИЧЕСКИМ ДЕФОРМИРОВАНИЕМ

Методы обработки без снятия струж­ки все больше применяют для деталей в связи с ужесточением эксплуатационных характеристик машин: высокой произво­дительности, быстроходности, прочности, точности и др. Такой обработке подверга­ют предварительно подготовленные по­верхности.

Если формы заготовок приблизить к формам готовых деталей, то ответствен­ные поверхности можно обрабатывать шлифованием и затем окончательно од ним из методов обработки без снятия стружки. Предоставляется возможность уменьшить количество отходов и упро­стить обработку.

. ХОНИНГОВАНИЕ Хонингование применяют для получе­ния поверхностей высокой точности и малой шероховатости, а также для созда­ния специфического микропрофиля обра­ботанной поверхности в виде сетки. Такой профиль необходим для удержания сма­зочного материала при работе машины (например, двигателя внутреннего сгора­ния) на поверхности ее деталей.

Поверхность неподвижной заготовки обрабатывают мелкозернистыми абразив­ными брусками, которые закрепляют в хонинговальной головке (хоне). Бруски вращаются и одновременно перемещаются возвратно-поступательно вдоль оси обра­батываемого цилиндрического отверстия

СУПЕРФИНИШ

Суперфинишем в основном уменьша­ют шероховатость поверхности, остав­шуюся от предыдущей обработки. При этом изменяются глубина и вид микро­неровностей, обрабатываемые поверхно­сти получают сетчатый рельеф. Поверх­ность становится чрезвычайно гладкой, что обеспечивает более благоприятные

условия взаимодействия трущихся по­верхностей.

Поверхности обрабатывают абразив­ными брусками, устанавливаемыми в спе­циальной головке. Для суперфиниша ха­рактерно колебательное движение брусков наряду с движением заготовки. Процесс резания происходит при давлении брусков (0,5 ... 3) 105 Па и в присутствии смазочно­го материала малой вязкости.

Процесс характеризуется сравнительно малыми скоростями главного движения резания (0,08 ... 0,2 м/с).

Важную роль играет смазочно-охлаждающая жидкость. Масляная пленка по­крывает обрабатываемую поверхность, но наиболее крупные микровыступы (рис. 6.96, 6) прорывают ее и в первую очередь срезаются абразивом. Давление брусков на выступы оказывается боль­шим. По мере дальнейшей обработки давление снижается, так как все большее чис­ло выступов прорывает масляную пленку.

При обработке сталей лучших резуль­татов достигают при применении брусков из электрокорунда, при обработке чугуна и цветных металлов - из карбида крем­ния. В большинстве случаев применяют бруски на керамической или бакелитовой связках. Большое влияние на ход процесса оказывает твердость брусков.

. ПРИТИРКА ПОВЕРХНОСТЕЙ

Поверхности деталей машин, обрабо­танные на металлорежущих станках, все­гда имеют отклонения от правильных гео­метрических форм и заданных размеров.

74п Эти отклонения могут быть устранены притиркой (абразивной доводкой). Таким методом могут быть обеспечены шеро­ховатость поверхности до Кг = 0,05 ... 0,01 мкм, отклонения размеров и фор­мы обработанных поверхностей до 0,05 ... 0,3 мкм. Доводка может быть осуществле­на вручную и механическим способом.

По сравнению с ручной доводкой ме­ханическая абразивная доводка позволяет повысить производительность в 2 ... 6 раз, и при этом обеспечивается стабильность выходных - эксплуатационных характери­стик деталей агрегатов и машин (гидрав­лической, пневматической и топливной аппаратуры, зубчатых колес, шариков и колец подшипников качения и др.), вы­ходных параметров кремниевых подло­жек, кварцевых кристаллических элементов, керамических опор гидроприборов и д . ПОЛИРОВАНИЕ ЗАГОТОВОК

Полированием уменьшают шерохова­тость поверхности. Этим методом полу­чают зеркальный блеск на ответственных частях деталей (дорожки качения под­шипников) либо на деталях, применяемых для декоративных целей (облицовочные части автомобиля). Для этого используют полировальные пасты или абразивные зерна, смешанные со смазочным материа­лом. Эти материалы наносят на быстро-вращающиеся эластичные (например, фетровые) круги или колеблющиеся щет­ки. Хорошие результаты дает полирование быстродвижущимися бесконечными абра­зивными лентами (шкурками).

75 ЧИСТОВАЯ ОБРАБОТКА

ПЛАСТИЧЕСКИМ

ДЕФОРМИРОВАНИЕМ

Методы обработки без снятия струж­ки все больше применяют для деталей в связи с ужесточением эксплуатационных характеристик машин: высокой произво­дительности, быстроходности, прочности, точности и др. Такой обработке подверга­ют предварительно подготовленные по­верхности.

Если формы заготовок приблизить к формам готовых деталей, то ответствен­ные поверхности можно обрабатывать шлифованием и затем окончательно одним из методов обработки без снятия стружки. Предоставляется возможность уменьшить количество отходов и упро­стить обработку.

Методы обработки основаны на ис­пользовании пластических свойств метал­лов, т.е. способности металлических заго­товок принимать остаточные деформации без нарушения целостности металла. Детали становятся менее чувствительными к усталостному разру­шению, повышаются их коррозионная стойкость и износостойкость сопряжений, удаляются риски и микротрещины, остав­шиеся от предшествующей обработки. В ходе обработки шаровидная форма кри­сталлитов поверхности металла может измениться, кристаллиты сплющиваются в направлении деформации, образуется упорядоченная структура волокнистого характера. Поверхность заготовки прини­мает требуемые формы и размеры в ре­зультате перераспределения элементарных объемов под воздействием инструмента. Исходный объем заготовки остается по­стоянным.

В зоне обработки не возникает высо­кая температура, поэтому в поверхност­ных слоях фазовые превращения не про­исходят.

Обработку без снятия стружки выпол­няют на многих металлорежущих станках и установках, используя специальные ин­струменты. Созданы также особые станки, на которых наряду с резанием заготовки обрабатывают пластическим деформиро­ванием. Методы чистовой обработки ис­пользуют для всех металлов, способных пластически деформироваться, но наибо­лее эффективны они для металлов с твер­достью до НВ 280.

ОБКАТЫВАНИЕ И РАСКАТЫВАНИЕ ПОВЕРХНОСТЕЙ

Обкатыванием и раскатыванием отде­лывают и упрочняют цилиндрические, конические, плоские и фасонные наруж­ные и внутренние поверхности.

Сущность этих методов состоит в том, что в результате давления поверхностные слои металла, контактируя с инструмен­том высокой твердости, оказываются в состоянии всестороннего сжатия и пла­стически деформируются. Инструментом являются ролики и шарики, перемещаю­щиеся относительно заготовки. Обкатывают, как правило, наружные поверхности, а раскатывают внутренние цилиндрические и фасонные поверхности. При обкатывании роликами основными параметрами режима упрочнения являют­ся давление в зоне контакта с роликом, число его проходов, подача и скорость обкатывания. Глубину деформированного слоя определяет давление.

АЛМАЗНОЕ ВЫГЛАЖИВАНИЕ

Малой шероховатости поверхности и ее упрочнения можно достичь алмазным выглаживанием. Сущность этого метода состоит в том, что оставшиеся после обра­ботки резанием неровности поверхности выглаживаются перемещающимся по ней прижатым алмазным инструментом. Ал­маз, закрепленный в державке, не враща­ется, а скользит с весьма малым коэффи­циентом трения. Рабочая часть инстру­мента выполнена в виде полусферы, ци­линдра или конуса. Чем тверже обрабаты­ваемый материал, тем меньше радиус скругления рабочей части алмаза.

Преимущества алмазного выглажива­ния состоят в повышении эксплуатацион­ных свойств обработанных поверхностей, снижении шероховатости поверхности, отсутствии переноса на обрабатываемую поверхность посторонних частиц, воз­можности обработки тонкостенных дета­лей и деталей сложной конфигурации, простоте конструкции выглаживателей.

Заготовки обрабатывают на станках токарной группы.

Силы прижатия алмаза к обрабатывае­мой поверхности сравнительно малы и колеблются в интервале 50 ... 300 Н. Про­цесс выглаживания ведут со смазыванием веретенным маслом.

дорнирование

75п Дорнование (дорнирование) – вид обработки заготовок без снятия стружки. Сущность доумент)|дорна]]. Размеры поперечного сечения инструмента больше размеров поперечного сечения отверстия заготовки на величину натяга.

Виды дорнования

Дорнование подразделяют на поверхностное и объёмное. При поверхностном дорновании пластически деформируется поверхностный слой, при объёмном – пластическое деформирование происходит по всему поперечному сечению обрабатываемой детали. Поверхностное дорнование относят к методам поверхностного пластического деформирования (ППД), а объёмное дорнование к методам обработки металлов давлением (ОМД).

9. УПРОЧНЯЮЩАЯ ОБРАБОТКА ПОВЕРХНОСТНЫХ СЛОЕВ ДЕТАЛЕЙ

Упрочняющую обработку предприни­мают для увеличения сопротивления уста­лости деталей. Методы упрочнения основаны на локальном воздействии инстру­мента на обрабатываемый материал. При этом возникают многочисленные зоны воздействия на весьма малых участках поверхности, в результате чего создаются очень большие местные давления. Много­численные контакты с инструментом при­водят к упрочнению поверхностного слоя. В поверхностных слоях возникают суще­ственные напряжения сжатия.

Прочность конструкционных материа­лов повышается благодаря воздействию нагрузок, создающих эффективные пре­пятствия для движения несовершенств кристаллической решетки.

Распространено упрочнение нанесени­ем ударов по поверхности заготовки ша­риками, роликами, различными бойками.

При статическом упрочнении на по­верхность заготовки воздействуют вра­щающимися роликами в процессе об­катывания или раскатывания.

Распространено дробеструйное дина­мическое упрочнение. Готовые детали машин подвергают ударному действию потока дроби в специальных камерах, где дробинки с большой скоростью переме­щаются под действием потока воздушной струи или центробежной силы.

Этот метод применяют для таких изде­лий, как рессорные листы, пружины, ло­патки турбин, штоки, штампы.

Эффект деформационного упрочнения повышается при использовании импульс­ных нагрузок, в частности взрывной вол­ны. При упрочении взрывом необходимы энергоноситель и среда, передающая дав­ление на упрочняемую деталь. В качестве энергоносителя используют бризантные взрывчатые вещества, обеспечивающие как поверхностные, так и сквозные упроч­нения деталей.

76 Электрофизические и электрохимиче­ские (ЭФЭХ) методы обработки основаны на непосредственном воздействии различ­ных видов энергии (электрической, хими­ческой и др.) на обрабатываемую заготов­ку. При обработке заготовок этими мето­дами отсутствует силовое воздействие инструмента на заготовку или оно на-столько мало, что практически не влияет на суммарную погрешность обработки. Эти методы позволяют изменять форму обрабатываемой поверхности заготовки и влиять на состояние поверхностного слоя. Так, в некоторых случаях наклеп обрабо­танной поверхности не образуется, де­фектный слой незначителен, удаляются прижоги поверхности, полученные при шлифовании, повышаются коррозионные, прочностные и другие эксплуатационные характеристики поверхностей деталей.

При электроэрозионной обработке (ЭЭО) используют явление эрозии (разрушения) электродов из токопроводящих материалов при пропускании между ними импульсов электрического тока. Заготовку и инстру­мент, изготовленные из токопроводящих материалов, подключают к источнику тока -генератору импульсов (ГИ) и помещают в диэлектрическую жидкость.

Электрохимические методы обработки основаны на законах анодного растворе­ния металлов при электролизе. При про­хождении электрического тока через элек­тролит на поверхности заготовки, вклю­ченной в электрическую цепь и являю­щейся анодом, происходят химические реакции, и поверхностный слой металла превращается в химическое соединение. Продукты электролиза переходят в раствор или удаляются механическим способом.

Производительность процессов зави­сит в основном от электрохимических свойств электролита, обрабатываемого то-копроводящего материала и плотности тока.

Ултразвуковая обработка материалов -разновидность механической обработки -основана на разрушении обрабатываемого материала абразивными зернами под уда­рами инструмента, колеблющегося с ульт­развуковой частотой. Источником энергии служат ультразвуковые генераторы тока с частотой 16 ... 30 кГц. Инструмент полу­чает колебания от ультразвукового преоб­разователя с сердечником из магнито-стрикционного материала. Эффектом маг-нитострикции обладают никель, железо-никелевые сплавы (пермендюр), железо-алюминиевые сплавы (альфер), ферриты.

К лучевым методам формообразования поверхностей деталей машин относят электронно-лучевую и светолучевую (ла­зерную) обработку

Электронно-лучевая обработка осно­вана на превращении кинетической энер­гии направленного пучка электронов в тепловую. Высокая плотность энергии сфокусированного электронного луча по­зволяет обрабатывать заготовки за счет нагрева, расплавления и испарения мате­риала с узколокального участка.

Светолучевая (лазерная) обработка основана на тепловом воздействии свето­вого луча высокой энергии на поверхность обрабатываемой заготовки. Источником светового излучения служит лазер - опти­ческий квантовый генератор (ОКГ).

77 Особенности устройства металлообрабатывающих станков с ЧПУ. Назначение и основные преимущества станков.

Металлорежущие станки с системами ЧПУ применяют как для выполнения простых операций, так и для обработки сложных фасонных деталей. Системы ЧПУ обеспечивают высокий уровень автоматизации станков, включая автоматическую смену режущих инструментов и заготовок, изменение режимов резания, получение размеров поверхностей деталей. Станки с ЧПУ имеют большую производительность, чем универсальные станки. Станки с ЧПУ, изготовляемые на базе серийных, имеют коробку скоростей с передвижными зубчатыми блоками или оснащены бесступенчатым приводом главного движения. Механизм подачи станка обеспечивает перемещение заготовки, установленной на столе, в двух взаимно перпендикулярных направлениях – продольном и поперечном. Шпиндель станка вместе с ползуном перемещается в вертикальной плоскости. Эти три движения осуществляются от трех исполнительных механизмов. Каждый из них состоит из электродвигателя (М2 М3 М4), который управляет гидродвигателем (Г2 Г3 Г4). Гидродвигатели приводят в движение рабочие органы станка (стол и ползун) через зубчатые колеса и шариковые винтовые пары (2,3,4). Каждому импульсу, поступающему от системы ЧПУ, соответствует перемещение ползуна со шпинделем или стола на 0.01 мм. Консоль станка со столом и салазками имеет установочное вертикальное перемещение от гидродвигателя Г1 через пару конических колес 18/72 и винтовую пару 1.

Программа работы станка задается с помощью чисел в закодированном виде на программоносителе – перфорированной бумажной ленте.

78 Виды и сущность программного управления металлообрабатывающими станками. Упрощенная структурная схема цикловой системы управления. Классификация числовых систем программного управления (СЧПУ). Упрощенная структурная схема СЧПУ.

  1. В зависимости от способа управления исполнительным органом различают: позиционные, контурные и универсальные системы.

  2. В зависимости от наличия обратной связи системы управления могут быть замкнутыми, или закрытыми, и разомкнутыми, или открытыми.

  3. В зависимости от способа отсчета перемещения различают системы управления с абсолютным и относительным отсчетом. В первом случае отсчет ведется относительно начала системы координат: x1, y1, x2, y2 и т. д., во втором случае задаются приращения: Δx1, Δy1, Δx2, Δy2 и т. д.

  4. В зависимости от чисел управляемых координат различают одно-, двух-, трех-, четырех-, пятикоординатные системы управления. Из них какое-то число координат управляется одновременно (параллельно), а какое-то — последовательно.

  5. В зависимости от элементной базы и уровня использования; ЭВМ различают системы первого, второго, третьего поколения.

Устройства ЧПУ первого поколения не имели встроенного интерполятора. Программа, записанная на перфоленту при помощи вынесенного интерполятора, переписывалась на магнитную ленту, которую использовали для управления станком.

Устройства ЧПУ второго поколения имеют встроенный интерполятор и управляются от перфоленты. Для подготовки перфоленты используется ЭВМ.

Устройства ЧПУ третьего поколения (системы CNC) имеют встроенный микропроцессор. Это позволяет: вместо аппаратного обеспечения функций системы управления использовать программное обеспечение; реализовать более гибкий процесс программирования (ввод программы с клавиатуры, подготовка программы при изготовлении первой детали); использовать дисплей и режим диалога; использовать как программоноситель не только перфоленту, но и компакт-кассеты, диски с памятью и др.

80 Автоматическая линия — это система автоматически действующих станков, связанных транспортирующими средствами и имеющая единое управляющее устройство. Часто линии изготовляют для обработки вполне определенных деталей (например, картеров коробок скоростей автомобиля). Однако, если конструкция детали изменится, данная линия окажется непригодной для дальнейшего использования. Чтобы этого не случилось, используют принцип агрегатировани.Автоматические линии можно разделить на синхронные и несинхронные. В синхронных линиях (рис. 6.121, а) заготовки | передаются непосредственно от одного станка 2 к другому с помощью транспортного устройства. Это устройство перемещает одновременно все заготовки на шаг l. Станки в линии устанавливают так, чтобы можно было одновременно обрабатывать заготовки с двух сторон. Поворотный стол 3 позволяет последовательно поворачивать заготовки на 90° для того, чтобы на втором участке линии обрабатывать другие стороны.

В несинхронных линиях (рис. 6.121, 6) используют магазины-накопители 4, Их устанавливают между отдельными участками станков. Если, например, участок || вышел из строя, то участок ||| продолжает работать, потребляя заготовки из накопителя. В свою очередь, продолжает работать и участок |. Заготовки 2, обработанные на станках 1, поступают в позицию 3 и оттуда в накопитель по штриховой стрелке А. Такие линии более производительны, так как простои их значительно сокращены.

Автоматические линии могут управляться непосредственно ЭВМ, которые обеспечивают более широкий круг выполняемых работ, нежели в линиях, описанных выше.Автоматические линии обладают высокой производительностью.

ГИБКИЕ АВТОМАТИЧЕСКИЕ ПРОИЗВОДСТВА

Современные средства автоматизации, которыми оснащены автоматические линии, цехи и заводы, имеют существенный недостаток — они могут быть рационально использованы в массовом производстве. Однако наиболее распространенным типом производства является серийный. Возможность быстрого переналаживания оборудования в условиях серийного производства при изготовлении даже небольших партий заготовок обеспечивают гибкие автоматические производства (ГАП). ГАП организуется на базе оборудования, управляемого ЭВМ с помощью программ. Смена программ производится достаточно просто и быстро, при этом оборудование быстро переналаживается на изготовление другой детали. Использование ЭВМ позволяет осуществлять очень сложные способы управления Кроме изменения движения рабочих органов, машина может обучаться, поднастраиваться в процессе работы, определенным образом реагировать на различные внешние возмущения.

Гибкими могут быть линия, участок, цех, завод. Все элементы производства управляются единой системой. Согласованно, в автоматическом режиме работают транспортные устройства, склады за­готовок и деталей, система смены и установки инструментов, устройства контроля продукции и т. д. В производственном процессе ГАП человек непосредственно участия не принимает. ГАП функционирует на основе так называемой безлюдной технологии.

ГАП способствует резкому увеличению производительности труда в условиях серийного производства, позволяет очень быстро переходить на изготовление сходной, но другой продукции, обеспечивает повышение качества продукции за счет стабильных режимов обработки, автоматического устранения возможных ошибок, позволяет сократить цикл обработки, улучшает условия труда рабочих, обслуживающих весь комплекс.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]