Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ТКМ шпоры

.doc
Скачиваний:
95
Добавлен:
15.05.2015
Размер:
11.14 Mб
Скачать

35п

Стабильность горения дуги зависит от концентрации заряжен­ных частиц в дуговом промежутке, которая, в свою очередь, опре­деляется процессами ионизации (образование заряженных частиц). Основными механизмами образования заряженных частиц являют­ся: автоэлектронная и термоэлектронная эмиссии, а также иониза­ция ударом, термическая ионизация, фотоэмиссия и фотоионизация.

Напряжение холостого хода источника сварочного тока должно быть достаточным для легкого зажигания сварочной дуги. Оно должно отвечать требованию

3пп

36 Распавляемое при сварке электродное покрытие кроме шлака выделяет газы, осуществляя, таким образом, газошлаковую защиту металла. В зависимости от состава покрытия или флюса может выделяться значительное количество газа и меньшее количество шлака, или наоборот. В первом случае покрытиё называют газозашитным, а во втором— шлакозащитным. Обычно применяют смешанную защиту. Металлургическая обработка металла выделяющимися при сварке шлаком и газами заключается в процессах раскисления, легирования и рафинирования металла шва.

Раскисление — это освобождение стали от кислорода, попадающего в ванну из воздуха, покрытий и других источников. В процессе сварки происходит осаждающее раскисление, при котором удаление кислорода из расплавляемого металла капли или ванпы осуществляется реакциями с другими элементами, более активно взаимодействующими с кислородом, чем железо. Удаление кислорода происходит путем восстановления железа из оксида FeO по реакциям:

При этом MnO и SiO2 переходят в шлак, а СО — в атмосферу. Процесс идет беспрерывно: окисление Fe идет в передней части ванны, где температура более высокая, а восстановление железа из оксида — в задней части, где температура более низкая. Наряду с осаждающим раскислением происходит процесс диффузионного раскисления путем реакции между оксидом железа и другими оксидами

FeO, таким образом, связывается в стойкий силикат, который переходит в шлак. При большом содержании в шлаке силиката кремния реакция может пойти в обратную сторону, и металл будет окисляться, растворяя FeO. Поэтому содержание 5Юг в шлаке должно быть в количестве, необходимом для диффузионного раскисления. Следует иметь в виду, что SiO2 делает шлак «длинным», малоподвижным и ухудшает его газопроницаемость. При необходимости добавляют в покрытие другие материалы, повышающие жидкотекучесть шлака. Из приведенных выше химических реакций видно, что раскисление металла при сварке осуществляется при введении в покрытие химических элементов-раскислителей: Mn, Si, Al, T и др. в виде порошка или ферросплавов (сплавов с железом), а также при увеличении содержания этих элементов в электродных стержнях.

Легирование металла шва различными полезными примесями для улучшения его качества осуществляется путем введения полезных элементов в электродные стержни или проволоку, а также в состав электродного покрытия. Такие элементы, как кобальт, никель и др., полностью усваиваются наплавленным металлом. Элементы Мп и Si, участвующие в раскислении, при их достаточной концентрации в шлаке в электродном металле также частично усваиваются, переходя в сварной шов.

36п Рафинирование металла шва заключается в освобождении его от вредных примесей, главным образом от серы и фосфора, которые попадают в ванну из основного металла, электродного стержня и покрытия, проволоки и флюса. Сера может остаться в шве в виде сульфида железа FeS, располагаясь между кристаллами стали. Это приводит к появлению горячих трещин в стали (см. § 9.7). Фосфор, находясь в шве в виде фосфидов Fe3P H^Fe2P, снижает его ударную вязкбсть, особенно при низкой температуре, поэтому удаление из шва серы и фосфора необходимо. Это осуществляется путем связывания серы и фосфора в химические соединения, не растворимые в стали и удаляемые в шлак, по реакциям:

37 . сварочные проволки

При содержании в проволоке менее 1% легирующих элементов ставят только букву этого элемента, если содержание легирующего элемента превышает 1%, то после буквы в целых единицах указывают содержание этого элемента.

Условные обозначения марок проволоки состоят: из индекса Св-сварочная и следующих за ним цифр, показывающих содержание углерода в сотых долях процента и буквенных обозначений элементов, Входящих в состав проволоки. Буква А в конце условных обозначений марок низкоуглеродистой и легированной проволоки указывает на повышенную чистоту металла по содержанию серы и фосфора.

Например, условное обозначение проволоки диаметром 2 мм из низкоуглеродистой кремнемарганцевой стали, содержащего 1.4 -1.7 Mn и 0.60-0.85 Si, 2Св-08ГС.

По виду поверхности низкоуглеродистая и легированная проволока подразделяется на неомедненную и омедненную. Последняя поставляется по особому требованию заказчика. Кроме того, по особому требованию заказчика изготовляют проволоку из стали, выплавленной электрошлаковым, вакуум-дуговым или вакуум-индукционным методом.

Различные виды проволоки имеют условное обозначение:

  Э- для изготовления электродов;

  О-омедненная;

  Ш-полученная из стали, выплавленной электрошлаковым переплавом;

  Вд-полученная из стали выплавленной вакуум-дуговым переплавом;

  ВИ-полученная из стали, выплавленной в вакуум-индукционной печи.

Поверхность проволоки должна быть чистой без окалины, ржавчины, грязи и масла. Предусматривается выпуск проволоки следующих диаметров, мм: 0.3; 0.5; 0.8; 1.0; 1.2; 1.4; 1.6; 2.0; 3.0; 4.0; 5.0;6.0; 8.0; 10.0; 12.0.

Классификация электродов. Электроды классифицируются по следующим признакам:

  по материалу, из которого они изготовлены;

  по назначению для сварки определенных сталей;

  по толщине покрытия, нанесенного на стержень;

  по видам покрытия;

  характеру шлака образующегося при расплавлении покрытия;

  техническим свойствам металла шва;

  по допустимым пространственным положениям сварки или плавки;

  по роду и полярности применяемого при сварке или наплавке тока.

Применение электродов должно обеспечивать следующие необходимые технические условия: легкое зажигание и устойчивое горение дуги, равномерное расплавление покрытия, равномерное покрытие шва шлаком, легкое удаление шлака после сварки, отсутствие непроваров, пор, трещин в металле шва.

37п Электроды подразделяются на группы в зависимости от свариваемых материалов: углеродистых и низкоуглеродистых конструкционных сталей-У ( условное обозначение); легированных конструкционных сталей-Л; легированных теплоустойчивых сталей-Т; высоколегированных сталей с особыми свойствами-В; для наплавки поверхностных слоев с особыми свойствами -Н.

По видам покрытия электроды подразделяются:

  А - с кислым покрытием, содержащим окислы железа, марганца, кремния, иногда титана. Металл шва отличается повышенной окисленностью, плотностью и позволяет выполнять сварку на постоянном ( прямой и обратной полярности) и переменном токе;

  Б - с основным покрытием, имеющим в качестве основы фтористый кальций (плавиковый шпат) и карбонат кальция (мрамор, мел). Сварку электродами с основным покрытием осуществляют на постоянном токе при обратной полярности. Вследствие малой склонности металла шва к образованию кристаллизационных и холодны трещин электроды с этим покрытием используют для сварки больших сечений;

  Ц - с целлюлозным покрытием, основные компоненты которых- целлюлоза, мука и другие органические составы, создающие газовую защиту дуги и образующие при плавлении тонкий шлак. Электроды с целлюлозным покрытием применяют, как правило, для сварки стали малой толщины;

  Р - с рутиловым покрытием, основной компонент которых-рутил (TiO2). Для шлаковых и газовой защиты в покрытия этого типа вводят соответствующие минеральные и органические компоненты, а для повышения производительности иногда добавляют железный порошок. При сварке на постоянном токе разбрызгивание металла незначительно. Устойчивость горения дуги высокая, формирование швов во всех пространственных положениях хорошее.

  П - прочие виды покрытий.

При покрытии смешанного вида используют соответствующее двойное условие обозначение.

Условное обозначение электродов для сварки конструкционных сталей состоит из обозначения марки электрода, его типа, диаметра стержня, типа покрытия и номера ГОСТа. Например обозначение электрода Э46А - УОНИИ-13/45-3.0-УД2 Е432(5)-Б10 ГОСТ 9467-75.

При сварке под плавлеными флюсами защита зоны сварки от окружающего воздуха происходит более эффективно. Это доказано исследованием содержания азота в металле шва. Например, при сварке тонкопокрытыми электродами остаточный азот составляет около 0,2%; при сварке толстопокрытыми электродами - 0,03; при сварке под плавленым флюсом - 0,008%.

Имеется ряд особенностей металлургических процессов при сварке под флюсом. Особенно интенсивно протекают металлургические процессы между жидким (расплавленным) флюсом и металлом, в результате чего изменяется состав металла шва. Сварку низкоуглеродистых сталей рекомендуется проводить под марганцовистыми высококремнистыми флюсами, где наблюдается процесс восстановления кремния и марганца, частичное окисление углерода, при этом оксид железа растворяется в жидком металле шва, частично переходит в шлак.

На участках сварочной ванны позади дуги при охлаждении жидкого металла, вплоть до затвердевания, продолжается раскисление металла. Кремний и марганец подавляют реакцию окисления углерода, что уменьшает образование пор. Обогащение металла марганцем очень важно, так как он обеспечивает вывод сернистых соединений из металла шва, предупреждая тем самым появление горячих трещин.

Изменение режима сварки влияет на содержание серы и фосфора в шве. При увеличении сварочного тока увеличивается количество расплавленного флюса и, как следствие, содержание фосфора в шве уменьшается, а содержание серы несколько возрастает. Повышение напряжения дуги при неизменном токе приводит к тому, что расплавленного флюса становится значительно больше, чем требуется для защиты расплавленного металла. В этом случае увеличивается переход марганца и кремния в шов, но увеличивается и переход фосфора в металл шва.

37пп Одновременносодержание серы в металле шва уменьшается. Таким образом, невозможно идеально освободиться от вредных примесей. Улучшения качества сварного шва можно добиться за счет применения керамических флюсов.

Керамические флюсы содержат большое количество ферросплавов, что позволяет улучшить металлургические процессы при сварке. В процессе сварки происходит более полное раскисление наплавленного металла, легирование наплавленного металла осуществляется в широких пределах. Для улучшения структуры сварных швов в металл шва вводят специальные добавки (модификаторы). Металлургические процессы при сварке в защитных газах значительно отличаются от ранее рассмотренных. Из защитных газов наибольшее применение имеют инертные - аргон, гелий и активный - углекислый газ.

При сварке в инертных газах металлургические процессы протекают только между элементами, содержащимися в металле сварочной ванны. Кислород и азот воздуха оттесняются инертными газами из зоны сварки.

Для предотвращения образования пористости шва при сварке в инертных газах необходимо тщательно удалять ржавчину и загрязнения с кромок основного металла и с поверхности сварочной проволоки.

При сварке в С02 газ оттесняет от сварочной зоны окружающий воздух и защищает расплавленный металл от проникновения азота. При сварке С02 углекислый газ распадается под воздействием высокой температуры на СО и 02. Дуга активно окисляет металл сварочной ванны, и роль СО2 сводится лишь к защите сварочной ванны от проникновения азота из воздуха. Для предотвращения чрезмерного окисления железа большое количество элементов раскислителей (марганец и кремний) вводится в сварочную ванну только через сварочную проволоку Се-08ГС и Св-08Г2С. В этом случае наплавленный металл получается с высокими механическими свойствами.

Для уменьшения содержания водорода в металле шва необходима добавка в углекислый газ 5-15% кислорода. При этом в процессе сварки увеличивается глубина противления, так как энергичнее протекают реакции окисления марганца и кремния с выделением теплоты.

38 При конструировании сварных изделий необходимо учитывать, что в процессе сварки возникают сварочные напряжения, в резуль­тате которых происходит коробление элементов конструкций, могут возникать горячие и холодные трещины в металле сварного шва и околошовной зоны. По этой причине при выполнении сварочных и наплавочных работ необходимо правильно выбирать оптимальные режимы сварки.

Сварочная дуга является концентрированным источником теп­ловой энергии, полную тепловую мощность можно посчитать по формуле

Q = U I, дж/с,

где Q - полная тепловая мощность, Дж/с; U - напряжение, В; I - сила сварочного тока, А.

Однако не вся тепловая энергия вводится в плавящийся электрод и свариваемый металл; часть ее теряется в окружающей среде.

Тепловая мощность, которая полезно используется при сварке, называется эффективной тепловой мощностью и рассчитывается по формуле

Q(эф)=ήUI Дж/с

где ή - коэффициент полезного использования тепловой энергии.

ή = 0,75 при ручной дуговой сварке, ή. = 0,85 при автоматической сварке под флюсом.

Тепловая энергия вводимая в единицу длины сварного шва, называется погонной энергией и зависит от двух параметров: эффективной тепловой мощности и скорости сварки. Она подсчитывается по формуле

Qпог = Q(эф)/V(св)

где Qпог " погонная энергия, Дж/м;

QЭф - эффективная тепловая мощность, Дж/с; \/св - скорость сварки, м/с,

Причины возникновения напряжений в сварных конструкциях следующие:

-неравномерность нагрева металла,

-фазовые (структурные) превращения, происходящие в сварном шве и околошовной зоне.

Неравномерный нагрев и изменение объема металла вследствие температурного расширения, фазовых превращений, структурных превращений приводят к возникновению упругих и пластических деформаций. В результате пластических деформаций остаются напряжения, которые называются остаточными напряжениями. Это может привести как к короблению сварной конструкции, так и возникновению сварочных трещин. Мерами по предотвращению возникновения напряжений и, как следствие, деформаций являются следующие мероприятия.

Холодные трещины — локальное межкристаллическое разрушение металла сварных соединений, возникающие под действием собственных сварочных напряжений. Формальными признаками холодных трещин, отличающими их от горячих, являются факт обнаружения трещин при визуальном наблюдении, как правило, после полного охлаждения сварного соединения и блестящий излом без следов высокотемпературного окисления.

Горячие трещины при сварке — хрупкие межкристаллические разрушения металла шва и зоны термического влияния, возникающие в твёрдо-жидком состоянии при завершении кристаллизации, а также в твёрдом состоянии при высоких температурах на этапе преимущественного развития межзёренной деформации. Они могут возникать при неблагоприятном сочетании некоторых факторов, связанных с понижением деформационной способности металла вследствие наличия в структуре легкоплавких эвтектик, дефектов кристаллического строения, выделения хрупких фаз, включения водорода (водородная болезнь) и т. д.

39 . КОНТАКТНАЯ СВАРКА

Контактная сварка относится к видам сварки с кратковременным нагревом места соединения без оплавления или с оплавлением и осадкой разогретых заготовок. Характерная особенность этих процессов — пластическая деформация, в ходе которой формируется сварное соединение.

Место соединения разогревается проходящим по металлу электрическим током, причем максимальное количество теплоты выделяется в месте сварочного контакта (рис. 5.24). Количество выде­ляемой теплоты определяется законом Джоуля — Ленца:

Q=I2Rt

где Q — количество теплоты, выделяемое в сварочном контуре, Дж; R — полное электросопротивление сварочного контура, Ом; I — сварочный ток, А; t — время протекания тока, с.

Полное электросопротивление сварочного контура R состоит из электросопротивлений выступающих концов L, свариваемых заготовок Rзаг, сварочного контакта Rк и электросопротивления между электродами и заготовками Яэл, т. е,

R=Rзаг+Rн+Rэл

Контактную сварку классифицируют по типу сварного соедине­ния, определяющего вид сварочной машины, и по роду тока, пита­ющего сварочный трансформатор. По типу сварного соединения различают сварку стыковую, точечную и шовную.

Стыковая сварка — разновидность контактной сварки, при которой заготовки свариваются по всей поверхности соприкос­новения. Свариваемые заготовки закрепляют в зажимах стыковой машины (рис. 5.26). Зажим 3 установлен на подвижной плите 4, перемещающейся в направляющих, зажим 2 укреплен на неподвиж­ной плите 1. Сварочный трансформатор соединен с плитами гибкими шинами и питается от сети через включающее устройство. Плиты перемещаются, и заготовки сжимаются под действием усилия Р,развиваемого механизмом осадки,

Точечная сварка — разновидность контактной сварки, при которой заготовки соединяются в отдельных точках. При точеч­ной сварке заготовки собирают внахлестку и зажимают с усилием Р между двумя электродами, подводящими ток к месту сварки (рис. 5.31). Соприкасающиеся с медными электродами поверхности свариваемых заготовок нагреваются медленнее их внутренних слоев. Нагрев продолжают до пластического состояния внешних слоев и до расплавления внутренних слоев. Затем выключают ток и сни­мают давление. В результате образуется литая сварная точка.

Точечная сварка в зависимости от расположения электродов по отношению к свариваемым заготовкам может быть двусторонней и односторонней. При двусторонней сварке (рис. 5.31, а) две (или больше) заготовки 1 сжимают между электродами 2 точечной машины. При односторонней сварке (рис. 5.31, б) ток распределяется между верхним и нижним листами 3 и 4, причем нагрев осуществляется частью тока, протекающего через нижний лист. Для увеличения тока, проходящего через нижний лист, предусмотрена медная подкладка 5. Односторонней сваркой можно соединять заготовки одновременно двумя точками. Параметры режима точечной сварки: удельное усилие сжатия, МПа; плотность тока j, А/мм2; время протекания тока t, с.

39п Шовная сварка — разновидность контактной сварки, при которой между свариваемыми заготовками образуется прочное и плотное соединение. Электроды выполняют в виде плоских роликов, между которыми пропускают свариваемые заготовки.

В процессе шовной сварки листовые заготовки 1 соединяют внахлестку, зажимают между электродами 2 (рис. 5.35) и пропускают ток. При движении роликов по заготовкам образуются перекрываю­щие друг друга сварные точки, в результате чего получается сплош­ной герметичный шов. Шовную сварку, так же как и точечную, можно выполнить при двустороннем а и одностороннем б расположениях электродов.

40 СУЩНОСТЬ ПРОЦЕССА И МАТЕРИАЛЫ ДЛЯ ПАЙКИ

Пайкой называется процесс получения неразъемного сое­динения заготовок с нагревом ниже температуры их автономного расплавления путем смачивания, растекания и заполнения зазора между ними расплавленным припоем и сцепления их при кристалли­зации шва. Образование соединения без расплавления основного металла обеспечивает возможность распая изделия.

По прочности паяные соединения уступают сварным. Паять можно углеродистые и легированные стали всех марок, твердые сплавы, цветные металлы, серые и ковкие чугуны. При пайке ме­таллы соединяются в результате смачивания и растекания жидкого припоя по нагретым поверхностям и затвердевания его после охлаждения,Прочность сцепления припоя с соединяемыми поверхностями зависит от физико-химических и диффузионных процессов, протека­ющих между припоем и основным металлом.

По условию заполнения зазора пайку можно разделить на ка­пиллярную и некапиллярную. По механизму образования шва капиллярная пайка подразделяется на пайку с готовым припоем, когда затвердевание шва происходит при охлаждении; контактно-реактивную пайку; реактивно-флюсовую; диффузионную. К некапиллярным способам относятся пайка-сварка и сварка-пайка.

При капиллярной пайке припой заполняет зазор между соединяемыми поверхностями и удерживается в нем за счет капиллярных сил. Соединение образуется за счет растворения основы в жидком припое и последующей кристаллизации раствора. Капиллярную пайку используют при соединении внахлестку.

При диффузионной пайке соединение образуется за счет взаимной диффузии компонентов припоя и паяемых материалов, причем возможно образование в шве твердого раствора или тугоплавких хрупких интерметаллидов. Для диффузионной пайки необходима продолжительная выдержка при температуре образования паяного шва и после завершения процесса —при температуре ниже солидуса

припоя.

При контактно-реактивной пайке между соединяемыми металлами или соединяемыми металлами и прослойкой проме­жуточного металла в результате контактного плавления образуется сплав, который заполняет зазор и при кристаллизации образует пая­ное соединение При реактивно-флюсовой пайке припой образуется за счет реакции вытеснения между основным металлом и флюсом. Реактивно-флюсо­ую пайку можно вести без припоя и с припоем.

При пайке-сварке соединение образуется так же, как при сварке плавлением, но в качестве присадочного металла применяют

припой

При сварке-пайке соединяют разнородные материалы с применением местного нагрева, при котором более легкоплавкий материал нагревается до температуры плавления и выполняет роль

припоя.

Наибольшее применение получили капиллярная пайка а пайка-сварка. Диффузионная и контактно-реактивная пайки более трудо­емки, но обеспечивают высокое качество соединения.

Припой —должен хорошо растворять основной металл, обладать смачивающей способностью, быть дешевым и недефицитным.

Припои представляют собой сплавы цветных металлов сложного состава. Все припои по температуре плавления подразделяют на особо легкоплавкие (температура плавления меньше145 °С), легкоплавкие (температура плавления 145< 450 °С), среднеплавкие (температура плавления 450 <1100°С) и тугоплавкие (температура плавления >1050°С).

40п К особолегкоплавким и легкоплавким припоям относятся оловянно-свинцовые, на основе висмута, индия, кадмия, цинка, олова, свинца. К среднеплавким и высокоплавким припоям относятся медные, медно-цинковые, медно-никелевые, с благородными металлами (серебром, золотом, платиной). Припои изготовляют в виде прутков, проволок, листов, полос, спиралей, дисков, колец> зерен и т, д., укладываемых в место соединения.

Изделия из алюминия и его сплавов паяют с припоями на алюми­ниевой основе с кремнием, медью, оловом и другими металлами. Магний и его сплавы паяют припоями на основе магния с добавками алюминия, меди, марганца и цинка. Изделия из коррозионно-стой­ких сталей и жаропрочных сплавов, работающих при высоких температурах (выше 500 °С), паяют тугоплавкими припоями на основе железа, марганца, никеля, кобальта, титана, циркония, гафния, ниобия и палладия.

Флюсы паяльные применяют для очистки поверхности паяемого металла, а также для снижения поверхностного натяжения и улучшения растекания и смачиваемости жидкого припоя. Флюс (кроме реактивно-флюсовой пайки) не должен химически взаимодейство­вать с припоем. Температура плавления флюса должна быть ниже температуры плавления припоя. Флюс в расплавленном и газообразном состояниях должен способствовать смачиванию поверхности основного металла расплавленным припоем.

10. ГАЗОВАЯ СВАРКА

При сварке место соединения нагревают до расплавления высокотемпературным газовым пламенем (рис. 5.17). При нагреве газосварочным пламенем 4 кромки свариваемых заготовок 1 рас­плавляются, а зазор между ними заполняется присадочным метал­лом 2, который вводят в пламя горелки 3 извне. Газовое пламя получают при сгорании горючего газа в атмосфере технически чистого кислорода.

41 Обр. металлов резанием – процесс срезания режущим инструментом с поверхности заготовки слоя металла для получения требуемой геометрич формы, точности размеров и шероховатости поверхности детали.

Сущность метода пласт деформ-я: поверхностные слои металла, контактируя с инструментом высокой твердости, в результате давления оказываются в состоянии всестороннего сжатия и пластически деформируются. Давление осуществляется только по зоне контакта. Инструмент – ролики и шарики, перемещающиеся относительно заготовки.

Электроэрозионный метод основан на явлении эрозии(разрушния) электродов из токопроводящих материалов при пропускании между ними импульсного Эл тока. Температура на поверхности обрабатываемой заготовки-электрода возрастает до 10000-12000 С. При этой температуре мгновенно испаряется элементарный объем металла.

Эл/химические методы основаны на явлении анодного растворения при электролизе. При прохождении пост Эл тока ч/з электролит на пов-ти заготовки, являющейся анодом происходят хим реакции и поверхностный слой, превращаясь в хим соединение, уходит в раствор или удаляются механически.

Ультразвук-е методы. УЗО – разновидность механич обработки Основана на явлении магнитострикции(способность ферромагнитных сплавов или металлов изменять размеры в переменном магнитном поле). Колебании Эл/м поля при УЗО 16-20кГц, амплитуда колебаний сердечника 5-10мкм(со стержнем-концентратором до 40-60мкм). К концентратору крепят рабочий инструмент - пуассон.

Лучевые методы. Электронно-лучевая(метод основан на превращении кинетич энергии пучка в тепловую. Под дейтвием высокой температуры происхдит испарение металла с поверхности заготовки). Лазерная обраб-ка(тепловое воздействие светового луча высокой энергии). Плазменный(плазму, имеющюю температуру 10000-30000 С направляют на обрабатываемую поверхность заготовки).

42 Обр. металлов резанием – процесс срезания режущим инструментом с поверхности заготовки слоя металла для получения требуемой геометрич формы, точности размеров и шероховатости поверхности детали.

Скорость резания–путь точки режущего лезвия инструмента относительно заготовки в направлении главного движения резания за единицу времени. Измеряют в м/мин, кроме шлифования, полировки и некоторых др видах обраб резанием, где ее измеряют в м/с.

Подача s – путь точки лезвия режущего инструмента относительно заготовки в направлении движения подачи за оборот или за двойной ход заготовки или инструмента. мм/об – сверление, точение; мм/дв. хода – строгание, долбление; мм/мин – фрезерование и т.д. Подачи: продольная, поперечная, вертикальная, наклонная, круговая, тангенциальная, окружная и т.д.

Глубина резания tрасстояние между обрабатываемой и обработанной поверхностью заготовки, измеренное перпендикулярно последней, за один рабочий ход инструмента относительно обраб-емой пов-ти.

Основное технологическое время – время, затрачиваемое непосредственно на процесс изменения формы и размеров заготовки и получения пов-ти требуемой шероховатости.

[При токарной T0=(L*i)/(nsпр)]

Главное движение резания Dr – прямолинейное поступательное или вращательное движение заготовки или режущего инструмента, происходящее с наибольшей скоростью и в процессе резания; движение подачи Ds – прямолинейное поступательное или вращательное движение режущего инструмента или заготовки; касательное движение Dк – прямолинейное поступательное или вращательное движение режущего инструмента; результирующее движение резания De – суммарное движение режущего инструмента относительно заготовки, включающее главное движение резания, движение подачи и касательное движение.

43 Образование поверхностей по методу копирования заключатся в том, что форма режущего лезвия инструмента является образующей линией, совпадающей по форме с образующей линией поверхности, или имеющей форму, обратную ей. Направляющая лиия воспроизводится вращением заготовки или поступательным движением инструмента. это формообразующее движение. Второе движение, направленное перпендикулярно пов –ти необходимо для получения определенного размера поверхности.

Образование поверхностей по методу следов заключатся в том, что образующая линия является траекторией движения точки(вершины) режущего лезвия инструмента, а направляющая линия – траектория движения точек заготовки. Оба движения формообразующие.

Образование поверхностей по методу касания заключатся в том, что направляющей линией служит касательная к ряду геометрических вспомогательных линий, являющихся траекториями движения точек режущего инструмента. Образующей линией служит режущее лезвие инструмента. Формообраз движение – подача sпр.

Образование поверхностей по методу обкатки заключатся в том, что образующая линия является огибающей кривой ряда последовательных положений режущего лезвия инструмента в результате двух согласованных относительных движений заготовки и инструмента. Направляющая линия образуется поступательным движением инструмента.

44 Схема: Движущийся резец под действием силы Р вдавливается в металл, в металле возникают упругие деформации. При дальнейшем движении резца упругие деф-ции переходят в пластические. Пластические деформации приводят к сдвиговым. Сдвиговые деформации вызываю скольжение отдельных частей зерен по кристаллографическим плоскостям(плоскостям скольжения) в определенных направлениях. Когда пластические деформации достигают наибольшей величины, а напряжения превысят силы внутреннего сцепления зерен металла, скалывается элементарный объем металла.

Виды стружек: 1) Сливная стружка образуется при резании пластичных металлов и сплавов и представляет собой сплошную ленту с гладкой внутренней(прирезцовой) стороной. С внешней стороны слабо выраженные зазубрины.

2) Стружка скалывания образуется при резании средних по твердости материалов. Гладкая c внутренней стороны и с явно выраженным зазубринами с наружней.

3) Стружка надлома образуется при обработке хрупких металлов, состоит из отдельных элементов, не связанных между собой.

Для получения стружки надлома на режущем инструменте выполняют стружкозавивательные и стружколомательные устройства, применяют прерывистый процесс резания,измняют геометрию режущего инструмента, режим резания, а при мизготовлении деталей на автоматах используют специальные автоматные стали.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]