Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
методичка по ЭиЭ.doc
Скачиваний:
26
Добавлен:
14.05.2015
Размер:
790.53 Кб
Скачать

3. Лабораторная установка

Установка состоит из макета (рис. 4), включающего в себя ПСН и КСН, регулируемого источника питания постоянного тока Б5-49, миллиамперметра и вольтметра. ПСН собран на стабилитроне VD1(Д814), имеет вход — гнезда 1, 2 и выход — гнезда 4, 5. В КСН (вход — гнезда 1, 3; выход — гнезда 6, 8) в качестве регулируемого сопротивления использована комбинация из транзисторов VT2(ГТ403) и VT1(П210), называемая составным транзистором.

Рис. 4. Схема лабораторного макета

Дополнительный транзистор ГТ403 ставится в управляющую цепь мощного силового транзистора VT1 с большим током базы для усиления управляющего сигнала с маломощного транзистора VT3(МП25). Опорное напряжение снимается со стабилитрона VD2(Д814). Принцип стабилизации остается тот же. Нагрузка у обоих стабилизаторов является общей (клеммы 7, 8), она подключается поочередно к выходам стабилизаторов (клеммы 6 или 4) через миллиамперметр. Источник питания также поочередно подключается к входам обоих стабилизаторов с указанной на схеме полярностью. Вольтметром можно контролировать напряжение как на входах стабилизаторов, так и на нагрузке.

4. Порядок выполнения работы

4.1. Собрать схему по рис. 4, подключив параметрический стабилизатор напряжения.

4.2. Снять зависимости Uвых (Uвх) при трех значениях переменного сопротивления Rн (полностью выведенное, выведенное и среднее).

4.3. Рассчитать коэффициенты стабилизации в пределе рабочего участка стабилизации.

4.4. Для определенных средних значений входного напряжения измерить нагрузочную характеристику стабилизатора (т. е. зависимость Uвых от Iн), получаемую путем изменения нагрузочного сопротивления.

4.5. Рассчитать внутреннее (выходное) сопротивление стабилизатора.

4.6. Переключить источник питания и измерительные приборы к компенсационному стабилизатору и повторить пп.4.2—4.5.

5. Содержание отчета

1. Схемы ПСН и КСН.

2. Семейства зависимостей Uвых (Uвх) и нагрузочных характеристик Uвых(Iн) обоих стабилизаторов.

3. Рассчитанные коэффициенты стабилизации и внутренних сопротивлений стабилизаторов.

6. Контрольные вопросы

1. Объясните принцип работы ПСН и КСН.

2. Как рассчитать коэффициенты стабилизации и внутреннее сопротивление стабилизаторов?

3. Какие преимущества и недостатки имеют оба типа стабилизаторов?

4. Каким образом устанавливается выходное напряжение в стабилизаторах обоих типов?

5. Чем отличается режим работы полупроводниковых стабилитронов в стабилизаторах обоих типов?

7. Литература

1. Манаев Е. И. Основы радиоэлектроники. М.: Сов. радио, 1976. С. 399—402.

Лабораторная работа № 8

НЕЛИНЕЙНОЕ РЕЗОНАНСНОЕ УСИЛЕНИЕ И УМНОЖЕНИЕ ЧАСТОТЫ

1. Цель работы

Изучение режима работы нелинейного резонансного усилителя и метода умножения частоты.

2. Краткие теоретические положения

В радиоэлектронных устройствах для целей усиления сигнала обычно используют электронные лампы или транзисторы. В общем случае эти приборы имеют нелинейную характеристику усиления. Это приводит к искажению усиливаемого сигнала, поскольку для любой входной частоты  в спектре выходного сигнала появляются гармоники кратных частот (2, 3, …). Для получения линейного режима усиления используют прямолинейный участок характеристики, причем чем выше требования к линейности, тем меньше используемый размер участка. Это ведет к снижению коэффициента усиления и неэкономичности режима работы. Однако нелинейный режим усиления (режим отсечки) также находит применение (мощные усилители, передатчики). Для точного расчета и анализа таких устройств характеристику усиления представляют полиномом n степени. Это приводит к весьма громоздким и сложным расчетным формулам. Поэтому для целей инженерных расчетов пользуются более простым способом — аппроксимацией усилительной характеристики отрезками прямых линий. Подобная аппроксимация, конечно, носит несколько грубый характер, но из-за простоты и наглядности находит широкое применение.

Рассмотрим нелинейный режим усиления на примере резистивного усилителя на биполярном транзисторе, включенном по схеме с общим эмиттером (рис. 1а). База транзистора имеет смещение Uб0 относительно эмиттера. Пусть на базу подается синусоидальный сигнал частотой  и амплитудой Uвх. Тогда напряжение на базе равняется

. (1)

Аппроксимируем характеристику усилителя отрезками прямых линий АВCD (рис. 2). Тогда ток коллектора равен

(2)

где U0 — положение точки В, а S — крутизна характеристики. Участок АВ определяет нулевое усиление, а CD — режим тока насыщения. Точка С как раз соответствует Uбmax. На рис. 2 методом проекций построена временная зависимость коллекторного тока (справа) от напряжения на базе (слева внизу) с использованием предложенной кусочной аппроксимации. Видно, что коллекторный ток представляет собой повторяющиеся импульсы амплитудой Imax и шириной по основанию 2, где  называется углом отсечки.

Рис. 1

Углом отсечки принято считать половину той части периода колебаний (в угловых единицах t) исходного сигнала, в течение которого косинусоидальный импульс отличен от нуля. Зависимость тока от времени в таком случае можно записать в виде

, (3)

где Im — амплитуда тока коллектора (пунктир), в случае если бы транзистор пропускал ток в обоих направлениях (т.е. характеристика усилителя представляла бы собой бесконечную прямую линию). Это выражение справедливо при -< t < (или -+2< t <+2 и т. д.), и Ik=0 в остальные моменты времени. Поскольку

,

выражение (3) перепишем в виде

(4)

Подставляя соотношение

,

следующее из рис. 2, в выражение (4), получаем

(5)

Для угла отсечки получаем

, (6)

или

. (6a)

Рис. 2

Импульсно-периодический ток можно разложить в ряд Фурье для определения амплитуд гармонических составляющих:

, (7)

где I0k — постоянная составляющая коллекторного тока, а Ink — амплитуды гармоник. Опуская промежуточные выкладки, запишем конечные результаты. Для первой гармоники

. (8)

Для n-й гармоники

. (9)

Постоянная составляющая, или нулевая гармоника, равняется

. (10)

Рассчитанные зависимости

(11)

от угла отсечки приведены на рис. 3. График коэффициентов n-ных гармоник дает возможность быстро и легко определить амплитуды гармоник коллекторного тока, если известны максимальное значение импульса тока и угол отсечки . Из рисунка следует, что при удвоении частоты угол отсечки надо выбирать равным =60, а при утроении — =40. Коэффициенты разложения n() достигают наибольших значений при  = 120o/n. Выбором определенного

Рис. 3

значения угла отсечки можно добиться исключения определенных гармоник (скажем, при =90 обращаются в ноль все нечетные гармоники и т. д.). Коллекторный ток можно записать в виде

. (12)

Следовательно, мгновенные значения тока заданы определенной функцией. Иногда используют другой вид разложения. Поскольку Imax=Im(1-cos()), а Im=SUвх, где S — крутизна, Uвх — амплитуда входного сигнала, то разложение (12) можно переписать в виде

. (13)

Коэффициенты разложения связаны соотношением

.

Рассчитанные зависимости n() приведены на рис. 4.

Рис. 4

Нелинейное резонансное усиление и умножение частоты осуществляются в нелинейном усилителе, работающем в режиме отсечки, за счет выделения из трансформированного спектра входного воздействия первой гармоники коллекторного тока (нелинейное усиление) или последующих гармоник с помощью частотно-избирательной цепи — резонансного контура (умножение частоты).

Принципиальная схема нелинейного резонансного усилителя (НРУ) приведена на рис. 1б. Пусть на вход НРУ поступает переменный гармонический сигнал, с частотой, равной резонансной частоте колебательного контура в нагрузке НРУ, и на базе транзистора напряжение имеет вид согласно формуле (1). При этом ток, протекающий в коллекторной цепи транзистора, будет изменяться согласно выражению (4). Напряжение на контуре можно записать в виде

, (14)

где Rэ — эквивалентное сопротивление параллельного контура при резонансе.

При анализе нелинейных цепей с избирательной нагрузкой квазилинейным методом вводятся характеристики и параметры нелинейного элемента для интересующей гармоники. Параметром транзистора по первой гармонике на схеме (рис. 1) является средняя крутизна:

Sср=Ik/ Uвх = S 1(). (15)

Зависимость амплитуды первой гармоники коллекторного тока I1k, или выходного напряжения НРУ — Uвых, которое равно амплитуде напряжения на контуре Ukmax, от амплитуды напряжения возбуждения Uвх называется колебательной характеристикой усилителя.

Зависимость коэффициента усиления НРУ по первой гармонике K1 от амплитуды напряжения возбуждения Uвх называется амплитудной характеристикой усилителя:

K1= Uвых/ Uвх = SсрRэк. (16)

Еще одна характеристика режима работы усилителя — так называемый коэффициент использования коллекторного напряжения, или коэффициент напряженности режима, который равняется

, (17)

где Ek — напряжение питания НРУ. Временная диаграмма коллекторного тока в недонапряженном режиме будет иметь вид, показанный на рис. 2, в перенапряженном режиме будут наблюдаться провалы в импульсах коллекторного тока. Критический режим перехода из недонапряженного режима в перенапряженный соответствует кр = 0,85—0,9. В недонапряженном режиме <кр. В перенапряженном режиме кр.