Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Osnovnye_ponyatia_geometricheskoy_optiki.docx
Скачиваний:
468
Добавлен:
14.04.2015
Размер:
672.71 Кб
Скачать

10. Методы получения когерентных волн. 2-хлучевые интерференционные схемы по методу деления фронта волны.

Для получения когерентных световых волн с помощью обычных (нелазерных) источников применяют метод разделения света от одного источника на две или нескольких систем волн (световых пучков). В каждой из них представлено излучение одних и тех же атомов источника, так что эти волны когерентны между собой и интерферируют при наложении.

Разделение света на когерентные пучки можно осуществить с помощью экранов и щелей, зеркал и преломляющих тел. Рассмотрим некоторые из этих методов

1.Метод Юнга

сточником света служит ярко освещенная щель S, от которой световая волна падает на две узкие щели S1 и S2, параллельные щели S.

Таким образом, щели S1 и S2играют роль когерентных источников. На экране Э (область ВС) наблюдается интерференционная картина в виде чередующихся светлых и темных полос.

2.Бипризма Френеля.

Она состоит из двух одинаковых сложенных основаниями призм. Свет от источника S преломляется в обеих призмах, в результате чего за призмой распространяются лучи, как бы исходящие от мнимых источников S1 и S2, являющихся когерентными. Таким образом, на экране Э (область ВС) наблюдается интерференционная картина.

3.Оптическая длина пути и разность хода

Пусть две когерентные волны (см. 3.1) создаются одним источником S, но до экрана проходят разные геометрические длины путей l1и l2 в средах с абсолютными показателями преломления n1 и n2 соответственно (рис.4).

Тогда фазы этих волн [см. (1) и (2.9)]

wt - j1= wt - k1l1 + j0 , wt -j2= wt - k2l1 + j0

а разность фаз

j2 -j1 = k2l2 - k1l1 =(12)

где l1= l/n1, l2= l/n2 -длины волн в средах, показатели преломления которых n1 и n2соответственно, l - длина волны в вакууме.

Произведение геометрической длины пути l световой волны на абсолютный показатель преломления n называется оптической длиной пути волны.

Величину (13)

называют оптической разностью хода интерферирующих волн. С учетом этого разность фаз

j2 -j1 =(14)

11-12. 2-Хлучевые интерференционные схемы по методу деления амплитуды фронта волны.(полосы равного наклона)

Рассмотрим схему опыта Поля, в котором реализован метод деления амплитуды (рис. 3.4). Точечный монохроматический источник S находится над тонкой прозрачной плоскопараллельной пластинкой. Для любой точки наблюдения Р есть два луча, которые приходят в нее, отразившись соответственно от верхней и от нижней поверхности пластинки. (метод деления амплитуды световой волны)

Следовательно, область интерференции – все полупространство над пластинкой, то есть интерференционная картина не локализована. На удаленном экране, параллельном пластинке, можно наблюдать интерференционную картину в виде концентрических колец.

Если толщина пластинки h a b << + , то угол α схождения интерферирующих лучей достаточно мал, так же как и угол Ω между этими лучами на выходе из источника. Поэтому поперечные размеры источника могут быть в принципе достаточно большими

При наблюдении в опыте Поля интерференционной картины на бесконечности (например, в фокальной плоскости собирающей линзы, см. рис. 3.5) апертура интерференции Ω ≈ 0 , что означает отсутствие ограничений на размер D источника. В этом случае, с учетом закона преломления ( nsin sin θ′ = θ ), оптическая разность хода интерферирующих лучей 1 и 2 равна

Δ = θ = − θ 2 cos 2 sin nh h n ′ (3.22)

и не зависит от угла θ и от положения источника S. С учетом изменения на π фазы волны при отражении от верхней границы (луч 1 отражается от оптически более плотной среды), для разности фаз ϕ интерферирующих лучей имеем:

ϕ (θ) =kΔ ± π = ± π

Соответствующая интерференционная картина получила название

"полос равного наклона".

В случае протяженного источника интерференционная картина локализована в бесконечности. Если, однако, пластинка достаточно тонкая, то можно наблюдать интерференционную картину вблизи передней отражающей поверхности пластинки. Для лучей 1 и 2 разность фаз ϕ в точке Р (при условии h << a ) может быть оценена с помощью формулы (3.23) для различных точек протяженного источника. Впрочем, если θ изменяется в достаточно узком интервале Δθ , то ϕ = ϕ(h) , а наблюдаемую интерференционную картину называют "полосами равной толщины".

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]