Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
111.docx
Скачиваний:
64
Добавлен:
09.04.2015
Размер:
242.59 Кб
Скачать

3. Морфология крови.

(Морфология форменных элементов крови

На долю форменных элементов крови приходится в среднем от 10,0 до 30,0% всей массы крови рыб и от 30,0 до 50,0% - у птиц и млекопитающих. Отношение объема форменных элементов и плазмы определяют с помощью гематокрита.

Эритроциты составляют основную массу форменных элементов крови. Наименьшее количество эритроцитов в 1 мкл содержится в крови круглоротых и рыб (около 0,15 млн.), несколько больше (3-4 млн.) - в крови птиц, и максимально - в крови млекопитающих (7,5 млн. и более)(табл.1).

Между количеством эритроцитов в единице объема крови и их объемом имеется обратно пропорциональная зависимость: эритроциты млекопитающих - самые маленькие (ок. 60-95 фл), а эритроциты хвостатых амфибий - самые крупные (10000 - 14000 фл).

По форме эритроцит представляет собой двояковогнутый диск, средний диаметр которого у млекопитающих 7,5 мкм, а толщина -2 мкм.

Эритроциты содержат до 95% по сухой массе гемоглобина и благодаря этому осуществляют дыхательную функцию крови. Сродство гемоглобина к кислороду регулируется 2,3-дифосфоглицератом, находящимся в значительных количествах в эритроцитах.

Установлено, что менее 3% молекул гемоглобина расположено на поверхности эритроцитов, и с точки зрения оптимальных условий для контакта с кислородом остальной гемоглобин находится в невыгодных условиях. Однако молекулы гемоглобина в толще эритроцитов расположены в определенном порядке и обладают свободным вращательным движением, способствующим активному, транспорту кислорода.

Использование методов разделения веществ позволило установить, что гемоглобин многих животных (лошадь, буйвол, коза, овца) имеет гетерогенную природу; гемоглобин коровы, свиньи, ламы, верблюда, кролика - гомогенен. Отмечены значительные различия и в способности гемоглобина полностью оксигенироваться, т.е. превращаться в оксигемоглобин. Так, гемоглобин оксигенируется на 50% у лошади при 26 мм ртутного столба, у ламы - при 22 мм, северного оленя - 35 мм, скумбрии - 17 мм, щуки - 2,5 мм, личинки комара Хирономуса - 0,5 мм, а лошадиного овода - при 0,02 мм рт. ст. Эти различия в величине сродства гемоглобина к кислороду у разных животных отражают несхожесть экологических условий, к которым надо приспосабливаться организмам в борьбе за существование.

Молекула гемоглобина транспортирует около 20% выделяемого организмом объема углекислоты, остальное количество переносится в виде физически растворенной (10%) и химически связанной, преимущественно в виде бикарбоната натрия (70%) форме плазмой крови.

В эритроцитах и на их поверхности могут присутствовать различные антигенные факторы (например, агглютиногены), которые обусловливают разнообразные иммунологические особенности крови.

В фиксированных и окрашенных обычными гематологическими красителями мазках крови эритроциты выглядят в виде круглых клеток розового или серовато-розового цвета с просветлением в центре за, счет двояковогнутой формы. Окраска эритроцитов кислыми красителями связана с присутствием гемоглобина, следовательно ее интенсивность может служить показателем насыщенности эритроцитов гемоглобином.

Лейкоциты, или белые (бесцветные) клетки, в периферической крови в норме циркулируют в виде зрелых зернистых форм, а также лимфоцитов и моноцитов. Зернистые лейкоциты в зависимости от характера грануляции в цитоплазме делятся на нейтрофильные, базофиль-ные и эозинофильные гранулоциты.

Нейтрофилы являются высокоспециализированными клетками с выраженной защитной функцией. Это связано с фагоцитарной и двигательной активностью нейтрофилов, способностью вырабатывать бактерицидные (лизоцим) и анитоксические факторы, пирогенные факторы. Эти клетки способны выделять биологически активные вещества (катепсины и др.), изменяющие проницаемость сосудов, способны переносить антитела, усиливать пролиферацию гранулоцитов костного мозга. Специфическая активность нейтрофилов обеспечивается многочисленными ферментными системами: в митохондриях при участии ферментов цикла Кребса осуществляется синтез АТФ, в специальных гранулах локализуются пероксидаза и цитохромоксидаза, в лизосомах - кислая и щелочная фосфатаза, неспецифические эстеразы, аминопептидаза, ?-глю-куронидаза, арисульфатаза и др.

В состав специфической зернистости входят лизоцим, различные аминокислоты, липиды, гликоген. Гликоген является важнейшим энергетическим веществом, обеспечивающим анаэробный гликолиз и жизнедеятельность нейтрофилов в неблагоприятных условиях.

Диаметр зрелых нейтрофилов 10-15 мкм; большую часть клетки занимает цитоплазма, содержащая специфическую зернистость. Ядро у сегментоядерных нейтрофилов представлено 2-4 сегментами, соединенными тонкими нитями хроматина; у палочкоядерных - С- или S - образной формы.

В гематологических препаратах цитоплазма нейтрофилов розовато-серого цвета, содержит мелкую бледно-фиолетовую зернистость, равномерно распределенную по всей цитоплазме. Ядро - темно-фиолетового цвета; у сегментоядерных иногда при окраске не выявляются межсегментные перемычки и создается впечатление, что в клетке несколько мелких ядер. В некоторых случаях, когда сегменты плотно прилегают друг к другу, возникают трудности в дифференцировке сегментоядерных от палочкоядерных нейтрофилов: работа с микровинтом микроскопа позволяет идентифицировать их.

Базофилы принимают участив в аллергических реакциях, процессах гемокоагуляции и многие функциональные и метаболические особенности базофилов неясны, поскольку исследования этих малочисленных гранулоцитов крайне ограничены. Известно, что базофилы способны вырабатывать гистамин, в их гранулах обнаружены скопления гепарина, а также содержатся липопротеиды, пероксидаза, гиалуроновая кислота, аминокислоты, кислая фосфатаза, арилсульфатаза, дегидрогеназы.

По размеру базофилы чуть меньше (8-10 мкм) нейтрофилов. В окрашенных препаратах цитоплазма, бледно-розового цвета, содержит темно-фиолетовые гранулы разной величины. Гранулы хорошо выявляются при окраске мазков по Паппенгейму; при использовании других красителей они легко растворяются в воде и выглядят бледно-фиолетовыми, размытыми структурами.

Ядро клетки большое, окрашено в темный цвет, не имеет строго определенной формы, иногда напоминает лист растения.

Эозинофилы участвуют в аллергических реакциях, обладают фагоцитарной и двигательной активностью, но в меньшей степени, чем нейтрофилы. Эозинофилы способны сорбировать на своей поверхности антитела, различные токсические вещества, даже инактивировать их, благодаря чему участвуют в иммунологических и антитоксических свойствах крови.

В эозинофилах обнаружено высокое содержание пероксидазы, арисульфатазы, катерсинов, цитохромоксидазы, сукциндегидрогеназы, аминокислот, фосфолипидов и других веществ, главным образом сосредоточенных в специфических гранулах. Участие эозинофилов в аллергических реакциях объясняется содержанием в них гистаминосвобождающих и ингибирующих освобождение гистамина из тучных клеток особых субстанций.

Обладая размером в 12-15 мкм, эозинофилы имеют весьма характерную структуру. В окрашенных препаратах они отличаются обильной, крупной розовой зернистостью, заполняющей всю цитоплазму клетки. В отдельных клетках выявляются гранулы светло-фиолетового цвета. Ядро чаще расположено эксцентрично и имеет две-три доли. По сравнению с сегментным ядром нейтрофилов, ядро эозинофилов окрашено менее интенсивно и больших размеров.

Лимфоциты представляют центральное звено иммунной системы организма. Они отвечают за формирование специфического иммунитета и выполняют функцию иммунного надзора в организме, обеспечивай защиту от всего чужеродного и сохраняя генетическое постоянство внутренней среды. Эту задачу лимфоциты выполняют благодаря наличию на оболочке специальных участков - рецепторов, активирующихся при контакте с чужеродным антигеном.

Лимфоциты синтезируют защитные антитела, лизируют чужеродные клетки, обеспечивают уничтожение собственных мутантных клеток, осуществляют иммунную память, участвуют в реакции отторжения трансплантата.

Выполнение перечисленных функций осуществляется специализированными формами лимфоцитов. В настоящее время различают три группы лимфоцитов: Т-лимфоциты (тимусзависимые), В-лимфоциты (бурсазависимые) и нулевые.

Т-лимфоциты образуются в костном мозге из клеток-предшественников, проходят стадию дифференцировки в вилочковой железе (тимус) а затем попадают в кровь, лимфатические узлы, селезенку.

Среди Т-лимфоцитов существует специализация. Различают клетки-хелперы (помощники), способствующие превращению В-лимфоцитов в плазматические клетки; клетки-супрессоры (угнетатели), контролирующие соотношение различных форм лимфоцитов и блокирующие чрезмерные реакции В-лимфоцитов; клетки-киллеры (убийцы), непосредственных пластинок, продолжительность жизни которых 8-12 суток.

Тромбоциты выполняют ряд важнейших функций. Одна из них участие в процессе гемостаза. В тромбоцитах помимо многочисленных ферментов и биологически активных соединений, присутствуют вещества, называемые тромбоцитарными факторами, участвующие в свертывании крови. В настоящее время известно более 11 факторов, регулирующие процессы адгезии (прилипание к поверхности) тромбоцитов, их агрегации (склеивание), связывание гепарина, уплотнение кровяного сгустка, сужение сосудов и пр.

Кроме участия в гемостазе, тромбоциты выполняют функцию транспорта креаторных веществ, важных для сохранения структуры сосудистой стенки. Они поглощаются клетками эндотелия, доставляя им находящиеся в тромбоцитах макромолекулы. На эти цели ежедневно расходуется до 15% циркулирующих в крови тромбоцитов. При нарушении указанного процесса эндотелий сосудов подвергается дистрофии и начинает пропускать через себя эритроциты.

Помимо этого, тромбоциты способны фиксировать антитела и выполняют фагоцитарную функцию. Доказаны и иммуногенные свойства тромбоцитов.

В мазках крови, окрашенных обычными красителями, тромбоциты выглядят как мелкие круглые или овальные образования. Их структура представлена гомогенной периферической зоной (гиаломер), окрашенной в сероватые или голубоватые цвета, и центральной - зернистой (грануломер) зоной, окрашенной в светло-фиолетовый цвет.)

Кровь

Перевод

Кровь

I (sanguis) жидкая ткань, осуществляющая в организме транспорт химических веществ (в т.ч. кислорода), благодаря которому происходит интеграция биохимических процессов, протекающих в различных клетках и межклеточных пространствах, в единую систему.

Кровь состоит из жидкой части — плазмы и взвешенных в ней клеточных (форменных) элементов. Нерастворимые жировые частицы клеточного происхождения, присутствующие в плазме, называют гемокониями (кровяная пыль). Объем К. в норме составляет в среднем у мужчин 5200 мл, у женщин 3900 мл.

Различают красные и белые кровяные тельца (клетки). В норме красных кровяных телец (эритроцитов) у мужчин 4—5․1012/л, у женщин 3,9—4,7․1012/л, белых кровяных телец (лейкоцитов) — 4—9․109/л крови. Кроме того, в 1 мкл крови содержится 180—320․109/л тромбоцитов (кровяных пластинок). В норме объем клеток составляет 35—45% объема крови.

Физико-химические свойства. Плотность цельной К. зависит от содержания в ней эритроцитов, белков и липидов Цвет К. меняется от алого до темно-красного в зависимости от соотношения форм гемоглобина, а также присутствия его дериватов — метгемоглобина, карбоксигемоглобина и др. Алый цвет артериальной крови связан с присутствием в эритроцитах оксигемоглобина, темно красный цвет венозной крови — с наличием восстановленного гемоглобина. Окраска плазмы обусловлена присутствием в ней красных и желтых пигментов, главным образом каротиноидов и билирубина; содержание в плазме большого количества билирубина при ряде патологических состояний придает ей желтый цвет.

Кровь представляет собой коллоидно-полимерный раствор, в котором вода является растворителем, соли и низкомолекулярные органические вещества плазмы — растворенными веществами, а белки и их комплексы — коллоидным компонентом. На поверхности клеток К. имеется двойной слой электрических зарядов, состоящий из прочно связанных с мембраной отрицательных зарядов и уравновешивающего их диффузного слоя положительных зарядов. За счет двойною электрического слоя возникает электрокинетический потенциал (дзета-потенциал), предотвращающий агрегацию (склеивание) клеток и играющий, т.о., важную роль в их стабилизации.

Поверхностный ионный заряд мембран клеток крови непосредственно связан с физико-химическими превращениями, происходящими на клеточных мембранах. Определить клеточный заряд мембран можно с помощью электрофореза. Электрофоретическая подвижность прямо пропорциональна величине заряда клетки. Наибольшей электрофоретической подвижностью обладают эритроциты, наименьшей — лимфоциты.

Проявлением микрогетерогенности К. является феномен оседания эритроцитов (см. Гемограмма). Склеивание (агглютинация) эритроцитов и связанное с ним оседание во многом зависят от состава среди, в которой они взвешены.

Электропроводность крови, т.е. ее способность проводить электрический ток, зависит от содержания электролитов в плазме и величины гематокритного числа. Электропроводность цельной К. на 70% определяется присутствующими в плазме солями (главным образом хлоридом натрия), на 25% белками плазмы и лишь на 5% клетками крови. Измерение электропроводности крови используют в клинической практике, в частности при определении СОЭ.

Ионная сила раствора — величина, характеризующая взаимодействие растворенных в нем ионов, что сказывается на коэффициентах активности, электропроводности и других свойствах растворов электролитов; для плазмы К. человека эта величина равна 0,145. Концентрация водородных ионов плазмы выражается в величинах водородного показателя (Водородный показатель). Средний рН крови 7,4. В норме рН артериальной крови 7,35—7,47, венозной крови на 0,02 ниже, содержимое эритроцитов обычно имеет на 0,1—0,2 более кислую реакцию, чем плазма. Поддержание постоянства концентрации водородных ионов в К. обеспечивается многочисленными физико-химическими, биохимическими и физиологическими механизмами, среди которых важную роль играют буферные системы крови. Их свойства зависят от присутствия солей слабых кислот, главным образом угольной, а также гемоглобина (он диссоциирует как слабая кислота), низкомолекулярных органических кислот и фосфорной кислоты (см. Буферные растворы). Сдвиг концентрации водородных ионов в кислую сторону называется Ацидозом, в щелочную — Алкалозом. Для поддержания постоянства рН плазмы наибольшее значение имеет бикарбонатная буферная система (см. Кислотно-щелочное равновесие). Т.к. буферные свойства плазмы почти целиком зависят от содержания в ней бикарбоната, а в эритроцитах большую роль играет также гемоглобин, то буферные свойства цельной К. в большой степени обусловлены содержанием в ней гемоглобина. Гемоглобин, как и подавляющее большинство белков К., при физиологических значениях рН диссоциирует как слабая кислота, при переходе в оксигемоглобин он превращается в значительно более сильную кислоту, что способствует вытеснению угольной кислоты из К. и переходу ее в альвеолярный воздух.

Осмотическое давление плазмы К. определяется ее осмотической концентрацией, т.е. суммой всех частиц — молекул, ионов, коллоидных частиц, находящихся в единице объема. Эта величина поддерживается физиологическими механизмами с большим постоянством и при температуре тела 37° составляет 7,8 мН/м2 (≈ 7,6 атм). Она в основном зависит от содержания в К. хлористого натрия и других низкомолекулярных веществ, а также белков, главным образом альбуминов, неспособных легко проникать через эндотелий капилляров. Эту часть осмотического давления называют коллоидно-осмотическим, или онкотическим. Оно играет важную роль в движении жидкости между кровью и лимфой, а также в образовании гломерулярного фильтрата.

Одно из важнейших свойств К. — вязкость составляет предмет изучения биореологии. Вязкость К. зависит от содержания белков и форменных элементов, главным образом эритроцитов, от калибра кровеносных сосудов. Измеряемая на капиллярных вискозиметрах (с диаметром капилляра несколько десятых миллиметра), вязкость крови в 4—5 раз выше вязкости воды. Величина, обратная вязкости, называется текучестью. При патологических состояниях текучесть К. существенно изменяется вследствие действия определенных факторов свертывающей системы крови (Свёртывающая система крови).

Морфология и функция форменных элементов крови. К форменным элементам крови относятся эритроциты, лейкоциты, представленные гранулоцитами (нейтрофильными, эозинофильными и базофильными полиморфно-ядерными) и агранулоцитами (лимфоцитами и моноцитами), а также тромбоциты. В крови содержится незначительное количество плазматических и других клеток. На мембранах клеток К. происходят ферментативные процессы и осуществляются иммунные реакции. Мембраны клеток К. несут информацию о группах К. в тканевых антигенах.

Эритроциты (около 85%) являются безъядерными двояковогнутыми клетками с ровной поверхностью (дискоцитами), диаметром 7—8 мкм (рис. 1). Объем клетки 90 мкм3 площадь 142 мкм2, наибольшая толщина 2,4 мкм, минимальная — 1 мкм, средний диаметр на высушенных препаратах 7,55 мкм. Сухое вещество эритроцита содержит около 95% гемоглобина, 5% приходится на долю других веществ (негемоглобиновые белки и липиды). Ультраструктура эритроцитов однообразна. При исследовании их с помощью трансмиссионного электронного микроскопа отмечается высокая однородная электронно-оптическая плотность цитоплазмы за счет содержащегося в ней гемоглобина; органеллы отсутствуют. На более ранних стадиях развития эритроцита (ретикулоцита) в цитоплазме можно обнаружить остатки структур клеток-предшественников (митохондрии и др.). Клеточная мембрана эритроцита на всем протяжении одинакова; она имеет сложное строение. Если мембрана эритроцитов нарушается, то клетки принимают сферические формы (стоматоциты, эхиноциты, сфероциты). При исследовании в сканирующем электронном микроскопе (растровая электронная микроскопия) определяют различные формы эритроцитов в зависимости от их поверхностной архитектоники. Трансформация дискоцитов вызывается рядом факторов, как внутриклеточных, так и внеклеточных (рис. 2)

Эритроциты в зависимости от размера называют нормо-, микро- и макроцитами. У здоровых взрослых людей количество нормоцитов составляет в среднем 70%.

Определение размеров эритроцитов (эритроцитометрия) дает представление об эритроцитопоэзе. Для характеристики эритроцитопоэза используют также эритрограмму — результат распределения эритроцитов по какому-либо признаку (например, по диаметру, содержанию гемоглобина), выраженный в процентах и (или) графически.

Зрелые эритроциты не способны к синтезу нуклеиновых кислот и гемоглобина. Для них характерен относительно низкий уровень обмена, что обусловливает длительную продолжительность их жизни (приблизительно 120 дней). Начиная с 60-го дня после попадания эритроцита в кровяное русло постепенно снижается активность ферментов. Это приводит к нарушению гликолиза и, следовательно, к уменьшению потенциала энергетических процессов в эритроците. Изменения внутриклеточного обмена связаны со старением клетки и в итоге приводят к ее разрушению. Большое число эритроцитов (около 200 млрд.) ежедневно подвергается деструктивным изменениям и погибает.

Лейкоциты. Гранулоциты — нейтрофильные (нейтрофилы), эозинофильные (эозинофилы), базофильные (базофилы) полиморфно-ядерные лейкоциты — крупные клетки от 9 до 15 мкм, они циркулируют в К. несколько часов, а затем перемещаются в ткани. В процессы дифференциации гранулоциты проходят стадии метамиелоцитов и палочкоядерных форм. В метамиелоцитах бобовидное ядро имеет нежное строение. В палочкоядерных гранулоцитах хроматин ядра более плотно упакован, ядро вытягивается, иногда в нем намечается образование долек (сегментов). В зрелых (сегментоядерных) гранулоцитах ядро обычно имеет несколько сегментов. Все гранулоциты характеризуются наличием в цитоплазме зернистости, которую подразделяют на азурофильную и специальную. В последней, в свою очередь, различают зрелую и незрелую зернистость.

В нейтрофильных зрелых гранулоцитах количество сегментов бывает от 2 до 5; новообразования гранул в них не происходит. Зернистость нейтрофильных гранулоцитов окрашивается красителями от коричневатого до красновато-фиолетового цвета; цитоплазма — в розовый цвет. Соотношение азурофильных и специльных гранул непостоянно. Относительное число азурофильных гранул достигает 10—20%. Важную роль в жизнедеятельности гранулоцитов играет их поверхностная мембрана. По набору гидролитических ферментов гранулы могут быть идентифицированы как лизосомы с некоторыми специфическими особенностями (наличие фагоцитина и лизоцима). При ультрацитохимическом исследовании показано, что активность кислой фосфатазы в основном связана с азурофильными гранулами, а активность щелочной фосфатазы — со специальными гранулами. С помощью цитохимических реакций в нейтрофильных гранулоцитах обнаружены липиды, полисахариды, пероксидаза и др. Основной функцией нейтрофильных гранулоцитов является защитная реакция по отношению к микроорганизмам (микрофаги). Они активные фагоциты.

Эозинофильные гранулоциты содержат ядро, состоящее из 2, реже 3 сегментов. Цитоплазма слабо базофильна. Эозинофильная зернистость окрашивается кислыми анилиновыми красителями, особенно хорошо эозином (от розового до цвета меди). В эозинофилах выявлены пероксидаза, цитохромоксидаза, сукцинатдегидрогеназа, кислая фосфатаза и др. Эозинофильные гранулоциты обладают дезинтоксикационной функцией. Количество их увеличивается при введении в организм чужеродного белка. Эозинофилия является характерным симптомом при аллергических состояниях. Эозинофилы принимают участие в дезинтеграции белка и удалении белковых продуктов, наряду с другими гранулоцитами способны к фагоцитозу.

Базофильные гранулоциты обладают свойством окрашиваться метахроматически, т.е. в оттенки, отличные от цвета краски. Ядро этих клеток не имеет структурных особенностей. В цитоплазме органеллы развиты слабо, в ней определяются специальные гранулы полигональной формы (диаметром 0,15—1,2 мкм), состоящие из электронно-плотных частиц. Базофилы наряду с эозинофилами участвуют в аллергических реакциях организма. Несомненна их роль и в обмене гепарина.

Для всех гранулоцитов характерна высокая лабильность клеточной поверхности, которая проявляется в адгезивных свойствах, способности к агрегации, образованию псевдоподий, передвижению, фагоцитозу. В гранулоцитах обнаружены кейлоны — вещества, которые оказывают специфическое действие, подавляя синтез ДНК в клетках гранулоцитарного ряда.

В отличие от эритроцитов лейкоциты в функциональном отношении являются полноценными клетками с большим ядром и митохондриями, высоким содержанием нуклеиновых кислот и окислительным фосфорилированием. В них сосредоточен весь гликоген крови, служащий источником энергии при недостатке кислорода, например в очагах воспаления. Основная функция сегментоядерных лейкоцитов — фагоцитоз. Их антимикробная и антивирусная активность связана с выработкой лизоцима и интерферона (Интерфероны).

Лимфоциты — центральное звено в специфических иммунологических реакциях; они являются предшественниками антителообразующих клеток и носителями иммунологической памяти. Основная функция лимфоцитов — выработка иммуноглобулинов (см. Антитела). В зависимости от величины различают малые, средние и большие лимфоциты. В связи с различием иммунологических свойств выделяют лимфоциты тимусзависимые (Т-лимфоциты), ответственные за опосредованный иммунный ответ, и В-лимфоциты, которые являются предшественниками плазматических клеток и ответственны за эффективность гуморального иммунитета.

Большие лимфоциты (рис. 3) имеют обычно круглое или овальное ядро, хроматин конденсируется по краю ядерной мембраны. В цитоплазме находятся одиночные рибосомы. Эндоплазматическая сеть развита слабо. Выявляют 3—5 митохондрий, реже их больше. Пластинчатый комплекс представлен небольшими пузырьками. Определяются электронно-плотные осмиофильные гранулы, окруженные однослойной мембраной. Малые лимфоциты (рис. 4) характеризуются высоким ядерно-цитоплазматическим отношением. Плотно упакованный хроматин образует крупные конгломераты по периферии и в центре ядра, которое бывает овальной или бобовидной формы. Цитоплазматические органеллы локализуются на одном полюсе клетки.

Продолжительность жизни лимфоцита колеблется от 15—27 дней до нескольких месяцев и лет. В химическом составе лимфоцита наиболее выраженными компонентами являются нуклеопротеиды. Лимфоциты содержат также катепсин, нуклеазу, амилазу, липазу, кислую фосфатазу, сукцинатдегидрогеназу, цитохромоксидазу, аргинин, гистидин, гликоген.

Моноциты — наиболее крупные (12—20 мкм) клетки крови. Форма ядра разнообразная, клетка окрашивается в фиолетово-красный цвет; хроматиновая сеть в ядре имеет широко-нитчатое, рыхлое строение (рис. 5). Цитоплазма обладает слабобазофильными свойствами, окрашивается в сине-розовый цвет, имея в разных клетках различные оттенки. В цитоплазме определяется мелкая нежная азурофильная зернистость, диффузно распределенная по всей клетке; окрашивается в красный цвет. Моноциты обладают резко выраженной способностью к окрашиванию, амебоидному движению и фагоцитозу, особенно остатков клеток и мелких чужеродных тел.

Тромбоциты — полиморфные безъядерные образования, окруженные мембраной. В кровяном русле тромбоциты имеют округлую или овальную форму. В зависимости от степени целости различают зрелые формы тромбоцитов, юные, старые, так называемые формы раздражения и дегенеративные формы (последние встречаются у здоровых людей крайне редко). Нормальные (зрелые) тромбоциты — круглой или овальной формы с диаметром 3—4 мкм; составляют 88,2 ± 0,19% всех тромбоцитов. В них различают наружную бледно-голубую зону (гиаломер) и центральную с азурофильной зернистостью — грануломер (рис. 6). При соприкосновении с чужеродной поверхностью волоконца гиаломера, переплетаясь между собой, образуют на периферии тромбоцита отростки различной величины. Юные (незрелые) тромбоциты — несколько больших размеров по сравнению со зрелыми с базофильным содержимым; составляют 4,1 ± 0,13%. Старые тромбоциты — различной формы с узким ободком и обильной грануляцией, содержат много вакуолей; составляют 4,1 ± 0,21%. Процентное соотношение различных форм тромбоцитов отражают в тромбоцитограмме (тромбоцитарной формуле), которая зависит от возраста, функционального состояния кроветворения, наличия патологических процессов в организме. Химический состав тромбоцитов достаточно сложен. Так, в их сухом остатке содержится 0,24% натрия, 0,3% калия, 0,096% кальция, 0,02% магния, 0,0012% меди, 0,0065% железа и 0,00016% марганца. Наличие в тромбоцитах железа и меди позволяет предположить их участие в дыхании. Большая часть кальция тромбоцитов связана с липидами в виде липидно-кальциевого комплекса. Важную роль играет калий; в процессе образования кровяного сгустка он переходит в сыворотку крови, что необходимо для осуществления его ретракции. До 60% сухого веса тромбоцитов составляют белки. Содержание липидов достигает 16—19% от сухого веса. В тромбоцитах выявлены также холинплазмалоген и этанолплазмалоген, играющие определенную роль в ретракции сгустка. Кроме того, в тромбоцитах отмечаются значительные количества β-глюкуронидазы и кислой фосфатазы, а также цитохромоксидазы и дегидрогеназы, полисахариды, гистидин. В тромбоцитах обнаружено соединение, близкое к гликопротеидам, способное ускорять процесс образования кровяного сгустка, и небольшое количество РНК и ДНК, которые локализуются в митохондриях. Хотя в тромбоцитах отсутствуют ядра, в них протекают все основные биохимические процессы, например синтезируется белок, происходит обмен углеводов и жиров. Основная функция тромбоцитов — способствовать остановке кровотечения; они обладают свойством распластываться, агрегировать и сжиматься, обеспечивая тем самым начало образования кровяного сгустка, а после его формирования — ретракцию. В тромбоцитах содержится фибриноген, а также сократительный белок тромбастенин, во многом напоминающий мышечный сократительный белок актомиозин. Они богаты аденилнуклеотидами, гликогеном, серотонином, гистамином. В гранулах содержится III, а на поверхности адсорбированы V, VII, VIII, IX, X, XI и XIII факторы свертывания крови.

Плазматические клетки встречаются в нормальной К., в единичном количестве. Для них характерно значительное развитие структур эргастоплазмы в виде канальцев, мешочков и др. На мембранах эргастоплазмы очень много рибосом, что делает цитоплазму интенсивно-базофильной. Около ядра локализуется светлая зона, в которой обнаруживается клеточный центр и пластинчатый комплекс. Ядро располагается эксцентрично. Плазматические клетки продуцируют иммуноглобулины

Биохимия. Перенос кислорода к тканям К. (эритроциты) осуществляет с помощью специальных белков — переносчиков кислорода. Это содержащие железо или медь хромопротеиды, которые получили название кровяных пигментов. Если переносчик низкомолекулярный, он повышает коллоидно-осмотическое давление, если высокомолекулярный — увеличивает вязкость К., затрудняя ее движение.

Сухой остаток плазмы К. человека около 9%, из них 7% составляют белки, в том числе около 4% приходится на альбумин, поддерживающий коллоидно-осмотическое давление. В эритроцитах плотных веществ значительно больше (35—40%), из них 9/10 приходится на гемоглобин.

Исследование химического состава цельной К. широко используется для диагностики заболеваний и контроля за лечением. Для облегчения интерпретации результатов исследования вещества, входящие в состав К., делят на несколько групп. В первую группу входят вещества (водородные ионы, натрий, калий, глюкоза и др.), имеющие постоянную концентрацию, которая необходима для правильного функционирования клеток. К ним применимо понятие постоянства внутренней среды (гомеостаза). Ко второй группе относятся вещества (гормоны, плазмоспецифические ферменты и др.), продуцируемые специальными видами клеток; изменение их концентрации свидетельствует о повреждении соответствующих органов. Третья группа включает вещества (некоторые из них токсичны), удаляемые из организма лишь специальными системами (мочевина, креатинин, билирубин и др.); накопление их в крови является симптомом повреждения этих систем. Четвертую группу составляют вещества (органоспецифические ферменты), которыми богаты лишь некоторые ткани; появление их в плазме служит признаком разрушения или повреждения клеток этих тканей. В пятую группу входят вещества, в норме продуцируемые в небольших количествах; в плазме они появляются при воспалении, новообразовании, нарушении обмена веществ и др. К шестой группе относятся токсические вещества экзогенного происхождения.

Для облегчения лабораторной диагностики разработано понятие нормы, или нормального состава, К. —диапазон концентраций, не свидетельствующих о заболевании. Однако общепринятые нормальные величины удалось установить лишь для некоторых веществ. Сложность заключается в том, что в большинстве случаев индивидуальные различия значительно превышают колебания концентрации у одного и того же человека в разное время. Индивидуальные различия связаны с возрастом, полом, этнической принадлежностью (распространенностью генетически обусловленных вариантов нормального обмена веществ), географическими и профессиональными особенностями, с употреблением определенной пищи.

В плазме К. содержится более 100 различных белков, из которых около 60 выделено в чистом виде. Подавляющее большинство из них гликопротеиды. Плазматические белки образуются в основном в печени, которая у взрослого человека продуцирует их до 15—20 г в день. Плазматические белки служат для поддержания коллоидно-осмотического давления (и тем самым для удержания воды и электролитов), выполняют транспортные, регуляторные и защитные функции, обеспечивают свертывание крови (гемостаз) и могут служить резервом аминокислот. Различают 5 основных фракций белков крови: альбумины, ․α1-, α2-, β-, γ-глобулины. Альбумины составляют относительно однородную группу, состоящую из альбумина и преальбумина. Больше всего в крови альбумина (около 60% всех белков). При содержании альбумина ниже 3% развиваются отеки. Определенное клиническое значение имеет отношение суммы альбуминов (более растворимых белков) к сумме глобулинов (менее растворимых)— так называемый Альбумин-глобулиновый коэффициент, уменьшение которого служит показателем воспалительного процесса.

Глобулины неоднородны по химической структуре и функциям. В группу α1-глобулинов входят следующие белки: орозомукоид (α1-гликопротеид), α1-антитрипсин, α1-липопротеид и др. К числу α2-глобулинов относятся α2-макроглобулин, гаптоглобулин, церулоплазмин (медьсодержащий белок, обладающий свойствами фермента оксидазы), α2-липопротеид, тироксинсвязывающий глобулин и др. β-Глобулины очень богаты липидами, в них входят также трансферин, гемопексин, стероидсвязывающий β-глобулин, фибриноген и др. γ-Глобулины — белки, ответственные за гуморальные факторы иммунитета, в их составе различают 5 групп иммуноглобулинов: lgA, lgD, lgE, lgM, lgG. В отличие от других белков, они синтезируются в лимфоцитах. Многие из перечисленных белков существуют в нескольких генетически обусловленных вариантах. Их присутствие в К. в одних случаях сопровождается заболеванием, в других — является вариантом нормы. Иногда присутствие нетипичного аномального белка приводит к незначительным нарушениям. Приобретенные заболевания могут сопровождаться накоплением специальных белков — парапротеинов, являющихся иммуноглобулинами, которых у здоровых людей значительно меньше. К ним относятся белок Бенс-Джонса, амилоид, иммуноглобулин класса М, J, А, а также криоглобулин. Среди ферментов плазмы К. обычно выделяют органоспецифические и плазмоспецифические. К первым относят те из них, которые содержатся в органах, а в плазму в значительных количествах попадают лишь при повреждении соответствующих клеток. Зная спектр органоспецифических ферментов в плазме, можно установить, из какого органа происходит данная комбинация ферментов и насколько значительно ею повреждение. К плазмоспецифическим относят ферменты, основная функция которых реализуется непосредственно в кровотоке; их концентрация в плазме всегда выше, чем в каком-либо органе. Функции плазмоспецифических ферментов разнообразны.

В плазме К. циркулируют все аминокислоты, входящие в состав белков, а также некоторые родственные им аминосоединения — таурин, цитруллин и др. Азот, входящий в состав аминогрупп, быстро обменивается путем переаминирования аминокислот, а также включения в состав белков. Общее содержание азота аминокислот плазмы (5—6 ммоль/л) примерно в два раза ниже, чем азота, входящего в состав шлаков. Диагностическое значение имеет в основном увеличение содержания некоторых аминокислот, особенно в детском возрасте, которое свидетельствует о недостаточности ферментов, осуществляющих их метаболизм.

К безазотистым органическим веществам относятся липиды, углеводы и органические кислоты. Липиды плазмы не растворимы в воде, поэтому переносятся К. только в составе липопротеинов (Липопротеины). Это вторая по величине группа веществ, уступающая белкам. Среди них больше всего триглицеридов (нейтральных жиров), затем идут фосфолипиды — главным образом лецитин, а также кефалин, сфингомиелин и лизолецитии. Для выявления и типирования нарушений жирового обмена (гиперлипидемий) большое значение имеет исследование содержания в плазме холестерина и триглицеридов.

Глюкоза К. (иногда ее не совсем правильно идентифицируют с сахаром крови) — основной источник энергии для многих тканей и единственный для головного мозга, клетки которого очень чувствительны к уменьшению ее содержания. Помимо глюкозы в К. присутствуют в небольших количествах другие моносахариды: фруктоза, галактоза, а также фосфорные эфиры сахаров — промежуточные продукты гликолиза.

Органические кислоты плазмы К. (не содержащие азота) представлены продуктами гликолиза (большая часть их фосфорилирована), а также промежуточными веществами цикла трикарбоновых кислот (см. Обмен веществ и энергии). Среди них особое место занимает молочная кислота, которая накапливается в больших количествах, если организм совершает более значительный объем работы, чем получает для этого кислорода (кислородный долг). Накопление органических кислот происходит также при различных видах гипоксии. β-Оксимасляная и ацетоуксусная кислоты, которые вместе с образующимся из них ацетоном относятся к кетоновым телам, в норме вырабатываются в сравнительно небольших количествах как продукты обмена углеводородных остатков некоторых аминокислот. Однако при нарушении углеводного обмена, например при голодании и сахарном диабете, вследствие недостатка щавелевоуксусной кислоты изменяется нормальная утилизация остатков уксусной кислоты в цикле трикарбоновых кислот, и поэтому кетоновые тела могут накапливаться в К. в больших количествах.

Печень человека продуцирует холевую, уродезоксихолевую и хенодезоксихолевую кислоты, которые выделяются с желчью в двенадцатиперстную кишку, где, эмульгируя жиры и активируя ферменты, способствуют пищеварению. В кишечнике под действием микрофлоры из них образуются дезоксихолевая и литохолевая кислоты. Из кишечника желчные кислоты (Жёлчные кислоты) частично всасываются в К., где большая часть их находится в виде парных соединений с таурином или глицином (конъюгированные желчные кислоты).

Все продуцируемые эндокринной системой Гормоны циркулируют в К. Их содержание у одного и того же человека в зависимости от физиологического состояния может очень значительно изменяться. Для них характерны также суточные, сезонные, а у женщин и месячные циклы. В К. всегда присутствуют продукты неполного синтеза, а также распада (катаболизма) гормонов, которые часто обладают биологическим действием, поэтому в клинической практике широкое распространение имеет определение сразу целой группы родственных веществ, например 11-оксикортикостероидов, йодсодержащих органических веществ. Циркулирующие в К. гормоны быстро выводятся из организма; период их полувыведения обычно измеряется минутами, реже часами.

В крови содержатся минеральные вещества и микроэлементы. Натрий составляет 9/10 всех катионов плазмы, концентрация его поддерживается с очень большим постоянством. В составе анионов доминируют хлор и бикарбонат; их содержание менее постоянно, чем катионов, поскольку выделение угольной кислоты через легкие приводит к тому, что венозная кровь бывает богаче бикарбонатом, чем артериальная. В процессе дыхательного цикла хлор перемещается из эритроцитов в плазму и обратно. В то время как все катионы плазмы представлены минеральными веществами, примерно 1/6 часть всех содержащихся в ней анионов приходится на белок и органические кислоты. У человека и почти у всех высших животных электролитный состав эритроцитов резко отличается от состава плазмы: вместо натрия преобладает калий, содержание хлора также значительно меньше.

Железо плазмы К. полностью связано с белком трансферрином, в норме насыщая его на 30—40%. Поскольку одна молекула этого белка связывает два атома Fe3+, образовавшихся при распаде гемоглобина, двухвалентное железо предварительно окисляется до трехвалентного. В плазме содержится кобальт, входящий в состав витамина В12. Цинк находится преимущественно в эритроцитах. Биологическая роль таких микроэлементов, как марганец, хром, молибден, селен, ванадий и никель, полностью не ясна; количество этих микроэлементов в организме человека во многом зависит от содержания их в растительной пище, куда они попадают из почвы или с промышленными отходами, загрязняющими окружающую среду.

В крови могут появиться ртуть, кадмий и свинец. Ртуть и кадмий в плазме К. связаны с сульфгидрильными группами белков, в основном альбумина. Содержание свинца в К. служит показателем загрязненности атмосферы; согласно рекомендациям ВОЗ, оно не должно превышать 40 мкг%, то есть 0,5 мкмоль/л.

Концентрация гемоглобина в К. зависит от общего количества эритроцитов и содержания в каждом из них гемоглобина. Различают гипо-, нормо- и гиперхромную анемию в зависимости от того, сопряжено понижение гемоглобина К. с уменьшением или увеличением его содержания в одном эритроците. Допустимые концентрации гемоглобина, при изменении которых можно судить о развитии анемии, зависят от пола, возраста и физиологического состояния. Большую часть гемоглобина у взрослого человека составляет HbA, в небольших количествах присутствуют также HbA2 и фетальный HbF, который накапливается в К. у новорожденных, а также при ряде заболеваний крови. У некоторых людей генетически обусловлено наличие в К. аномальных гемоглобинов; всего их описано более сотни. Часто (но не всегда) это сопряжено с развитием заболевания (см. Анемии). Небольшая часть гемоглобина существует в виде его дериватов — карбоксигемоглобина (связанного с СО) и метгемоглобина (в нем железо окислено до трехвалентного); при патологических состояниях появляются цианметгемоглобин, сульфгемоглобин и др. В небольших количествах в эритроцитах присутствуют лишенная железа простетическая группа гемоглобина (протопорфирин IX) и промежуточные продукты биосинтеза — копропорфирин, аминолевуленовая кислота и др.

Физиология. Основной функцией К. является перенос различных веществ, в т.ч. тех, с помощью которых организм защищается от воздействия окружающей среды или регулирует функции отдельных органов. В зависимости от характера переносимых веществ различают следующие функции крови.

Дыхательная функция включает транспорт кислорода от легочных альвеол к тканям и углекислоты от тканей к легким. Питательная функция — перенос питательных веществ (глюкозы, аминокислот, жирных кислот, триглицеридов и др.) от органов, где эти вещества образуются или накапливаются, к тканям, в которых они подвергаются дальнейшим превращениям, этот перенос тесно связан с транспортом промежуточных продуктов обмена веществ. Экскреторная функция состоит в переносе конечных продуктов обмена веществ (мочевины, креатинина, мочевой кислоты и др.) в почки и другие органы (например, кожу, желудок) и участии в процессе образования мочи. Гомеостатическая функция — достижение постоянства внутренней среды организма благодаря перемещению К., омыванию ею всех тканей, с межклеточной жидкостью которых ее состав уравновешивается (см. Гомеостаз). Регуляторная функция заключается в переносе гормонов, вырабатываемых железами внутренней секреции, и других биологически активных веществ, с помощью которых осуществляется регуляция функций отдельных клеток тканей, а также удаление этих веществ и их метаболитов после того, как их физиологическая роль выполнена. Терморегуляторная функция реализуется путем изменения величины кровотока в коже, подкожной клетчатке, мышцах и внутренних органах под влиянием изменения температуры окружающей среды (см. Терморегуляция): перемещение К благодаря ее высокой теплопроводности и теплоемкости увеличивает потери тепла организмом, когда существует угроза перегревания, или, наоборот, обеспечивает сохранение тепла при понижении температуры окружающей среды. Защитную функцию выполняют вещества обеспечивающие гуморальную защиту организма от инфекции и попадающих в К. токсинов (например, лизоцим), а также лимфоциты, участвующие в образовании антител. Клеточную защиту осуществляют лейкоциты (нейтрофилы, моноциты), которые переносятся током К. в очаг инфекции, к месту проникновения возбудителя, и совместно с тканевыми макрофагами формируют защитный барьер (см. Иммунитет). Током К. удаляются и обезвреживаются образующиеся при повреждении тканей продукты их деструкции. К защитной функции К. относится также ее способность к свертыванию, образованию тромба и прекращению кровотечения. В этом процессе принимают участие факторы свертывания крови и тромбоциты. При значительном снижении количества тромбоцитов (тромбоцитопении) наблюдается замедленное свертывание крови.

Группы крови. Количество К. в организме — величина довольно постоянная и тщательно регулируемая. В течение всей жизни человека не меняется также его группа крови — иммуногенетические признаки К. позволяющие объединять К. людей в определенные группы по сходству антигенов (см. Группы крови). Принадлежность К. к той или иной группе и наличие нормальных или изоиммунных антител предопределяют биологически благоприятное или, наоборот, неблагоприятное совместимое сочетание К. различных лиц. Это может иметь место при поступлении эритроцитов плода в организм матери во время беременности или при переливании крови. При разных группах К. у матери и плода и при наличии у матери антител к антигенам К. плода у плода или новорожденного развивается гемолитическая болезнь (см. Гемолитическая болезнь плода и новорожденного (Гемолитическая болезнь плода и новорождённого)).

Переливание реципиенту К. не той группы в связи с наличием у него антител к вводимым антигенам донора приводит к несовместимости и повреждению перелитых эритроцитов с тяжелыми последствиями для реципиента (см. Переливание крови). Поэтому основным условием при переливании К. является учет групповой принадлежности и совместимости К. донора и реципиента.

Генетические маркеры К. — свойственные форменным элементам и плазме К. признаки, используемые в генетических исследованиях для типирования индивидов. К генетическим маркерам К. относят групповые факторы эритроцитов, антигены лейкоцитов, ферментные и другие белки. Различают также генетические маркеры клеток К. — эритроцитов (групповые антигены эритроцитов, кислая фосфатаза, глюкозо-6-фосфатдегидрогеназа и др.), лейкоцитов (антигены HLA) и плазмы (иммуноглобулины, гаптоглобин, трансферрин и др.). Изучение генетических маркеров К. оказалось весьма перспективным при разработке таких важных проблем медицинской генетики, молекулярной биологии и иммунологии, как выяснение механизмов мутаций (см. Мутагенез) и генетического кода (см. Ген), молекулярной организации.

Особенности крови у детей. Количество К. у детей изменяется в зависимости от возраста и массы ребенка. У новорожденного на 1 кг массы тела приходится около 140 мл крови, у детей первого года жизни — около 100 мл. Удельный вес К. у детей, особенно раннего детского возраста, выше (1,06—1,08), чем у взрослых (1,053—1,058).

У здоровых детей химический состав К. отличается определенным постоянством и сравнительно мало меняется с возрастом. Между особенностями морфологического состава К. и состоянием внутриклеточного обмена существует тесная связь. Содержание таких ферментов К., как амилаза, каталаза и липаза, у новорожденных понижено, у здоровых детей первого года жизни отмечается повышение их концентраций. Общий белок сыворотки К. после рождения постепенно уменьшается до 3-го месяца жизни и после 6-го месяца достигает уровня подросткового возраста. Характерны выраженная лабильность глобулиновых и альбуминовых фракций и стабилизация белковых фракций после 3-го месяца жизни. Фибриноген в плазме К. обычно составляет около 5% общего белка.

Антигены эритроцитов (А и В) достигают активности только к 10—20 годам, а агглютинабельность эритроцитов новорожденных составляет 1/5 часть агглютинабельности эритроцитов взрослых. Изоантитела (α и β) начинают вырабатываться у ребенка на 2—3-м месяце после рождения, и титры их остаются низкими до года. Изогемагглютинины обнаруживаются у ребенка с 3—6-месячного возраста и только к 5—10 годам достигают уровня взрослого человека.

У детей средние лимфоциты в отличие от малых в 11/2 раза больше эритроцита, цитоплазма их шире, в ней чаще содержится азурофильная зернистость, ядро менее интенсивно окрашивается. Большие лимфоциты почти вдвое больше малых лимфоцитов, ядро их окрашивается в нежные тона, располагается несколько эксцентрично и имеет часто почковидную форму из-за вдавления сбоку. В цитоплазме голубого цвета могут содержаться азурофильная зернистость и иногда вакуоли.

Изменения К. у новорожденных и детей первых месяцев жизни обусловлены наличием красного костного мозга без очагов жирового, большой регенераторной способностью красного костного мозга и при необходимости мобилизацией экстрамедуллярных очагов кроветворения в печени и селезенке.

Снижение у новорожденных содержания протромбина, проакцелерина, проконвертина, фибриногена, а также тромбопластической активности К. способствует изменениям в свертывающей системе и склонности к геморрагическим проявлениям.

33

  1. Мышечные ткани, их общая характеристика, функциональное единство с элементами нервной системы и соединительной тканью.

Мышечная ткань

Относится к группе специализированных, выполняет функцию движения. Различают: 1)гладкую мышечную (неисчерченную)

2)поперечно-мышечную (исчерченную)

Гладкая мышечная ткань из мезенхимы, состоит из клеток веретеновидной форм. Ядро в клетке располагается в центре, вблизи ядра органеллы (пластинчатый комплекс, митохондрии). Сократительную функцию выполняют белковые нити, миофиламенты. Различают 3 вида миофиламентов:

  1. тонкие актиновые 7 нм

  2. толстые миозиновые 17 нм

  3. промежуточные 10 нм

Одиночные гладкомышечные встречаются редко, с прослойками соединительных тканей в стенках полых вен, внутри организма в продольном и поперечном направлениях. Сокращаются гладкие непроизвольно. Гладкая мышца обладает большой силой, слабой утомляемостью, медленным сокращением, способностью проводить возбуждение непроизвольными сокращениями.

Поперечно полосатая мышечная ткань. Различают:

1)скелетную

2)сердечную

шечная ткань — это вид ткани, которая осуществляет двигательные процессы в организме человека и животных (например, движение крови по кровеносным сосудам, передвижение пищи при пищеварении и т. д.) при помощи специальных сократительных структур — миофибрилл. Существуют два типа мышечной ткани: гладкая (неисчерченная); поперечнополосатая скелетная (исчерченная) и сердечная поперечнополосатая (исчерченная) (рис. 6).

Виды мышечной ткани:

I— продольный разрез; II— поперечный срез; А — гладкая (неисчерченная);

Б — поперечнополосатая скелетная; В — поперечнополосатая сердечная

Мышечная ткань обладает такими функциональными особенностями, как возбудимость, проводимость и сократимость.

Гладкая мышечная ткань состоит из веретеновидных клеток — миоцитов — длиной 15—500 мкм и диаметром около 8 мкм. Клетки располагаются параллельно одна другой и формируют мышечные слои. Гладкая мускулатура находится в стенках многих образований, таких как кишечник, мочевой пузырь, кровеносные сосуды, мочеточники, матка, семявыносящий проток и др. Например, в стенке кишечника есть наружный продольный и внутренний кольцевые слои, сокращение которых вызывает удлинение кишки и ее сужение. Такая скоординированная работа мышц называется перистальтикой и способствует перемещению содержимого кишки или ее веществ внутри полых органов.

Гладкая мышечная ткань сокращается постепенно и способна долго находиться в состоянии сокращения, потребляя относительно небольшое количество энергии и не уставая. Такой тип сократительной деятельности называется тоническим.

Поперечнополосатая скелетная мышечная ткань образует скелетные мышцы, которые приводят в движение кости скелета, а также входят в состав некоторых внутренних органов (язык, глотка, верхний отдел пищевода, наружный сфинктер прямой кишки). Исчерченная скелетная мышечная ткань состоит из многоядерных волокон цилиндрической формы, располагающихся параллельно одна другой, в которых чередуются темные и светлые участки (диски, полоски) и которые имеют разные светопреломляюшие свойства. Длина таких волокон колеблется от 1000 до 40 000 мкм, диаметр составляет около 100 мкм. Сокращение скелетных мышц произвольное, иннервируются они спинномозговыми и черепными нервами.

Сердечная поперечнополосатая мышечная ткань есть только в сердце. Она имеет очень хорошее кровоснабжение и значительно меньше, чем обычная поперечнополосатая ткань, подвергается усталости. Структурной единицей мышечной ткани является кардиомиоцит. При помощи вставочных дисков кардиомиоциты формируют проводящую систему сердца. Сокращение сердечной мышцы не зависит от воли человека.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]