Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция 2.docx
Скачиваний:
22
Добавлен:
09.04.2015
Размер:
314.27 Кб
Скачать

1.2 Примесные полупроводники

В чистом полупроводнике на образование пары требуется затратить значительное количество энергии и его проводимость при комнатной температуре весьма мала.

Значительно увеличить проводимость можно, легируя полупроводник трехвалентными или пятивалентными примесями. В пятивалентной примеси (сурьма Sb, фосфор Р, мышьяк As) один электрон не участвует в ковалентных связях и легко переходит в свободную зону при сообщении ему энергии гораздо меньшей, чем необходимо для разрыва ковалентной связи. В результате атом примеси, отдав электрон, становится устойчивым неподвижным положительным ионом. Такие примеси называют донорными. а легированные ими полупроводники - полупроводниками n-типа. Проводимость примесного полупроводника принято называть примесной проводимостью. Основными носителями заряда в полупроводнике n-типа являются электроны, а неосновными дырки.

Трехвалентный атом примеси, наоборот, для заполнения четвертой ковалентной связи стремится отобрать электрон у ближайшего атома полупроводника. При этом образуется устойчивый отрицательный ион и дырка, Полупроводник с такими примесями называется полупроводником р-типа, сами примеси (алюминий Al, бор В, индий In.) - акцепторными. В полупроводнике р-типа основными носителями заряда являются дырки, а неосновными - электроны.

В примесных полупроводниках при комнатной температуре практически все атомы примеси находятся в возбужденном состоянии, причем количество созданных ими основных носителей намного превышает количество неосновных, возникающих путем обычной термогенерации электронно-дырочных пар. В результате этого примесная проводимость гораздо выше собственной проводимости полупроводника, в значительно меньшей степени зависит от внешних факторов и определяется главным образом концентрацией легирующей примеси.

1.3 Полупроводниковый диод

Основой всех полупроводниковых приборов является электронно-дырочный переход (p-n переход). Он образуется на границе двух полупроводников с различными типами проводимости {глава 1.2}. Поскольку концентрация носителей заряда в области р-n перехода резко неоднородна, по законам диффузии основные носители (дырки в "р" области и электроны в "n" области), будут диффундировать в прилегающие области, создавая диффузионный ток.

Неосновные носители заряда (дырки в n-области и электроны в р-области) начнут дрейфовать в возникшем электрическом поле, создавая дрейфовый ток, направленный навстречу диффузионному току. В результате наступает динамическое равновесие, суммарный ток перехода будет равен нулю и на переходе установится контактная разность потенциалов, составляющая 0,3-0,4 В для германиевых переходов и 0,7-1,0 В для кремниевых. Если к переходу подключить источник эдс положительным полюсом к р области, а отрицательным - к n области, то результирующая разность потенциалов на переходе уменьшится. Переход откроется и начнет проводить ток за счет возрастания диффузии основных носителей заряда из n-области в р-область. При этом дрейфовый ток через переход уменьшится. Такое включение перехода принято называть включением в прямом направлении (прямо смещенный переход).

Рис 1-3 Прямое включение p-n перехода

Приложение напряжения в обратном направлении (плюсом к n, а минусом - к р-области) приведет к увеличению разности потенциалов на переходе, а значит к уменьшению диффузионного тока и увеличению дрейфового. Поскольку дрейфовый ток создается неосновными носителями заряда, которых в полупроводнике значительно меньше, чем основных, суммарный ток через переход будет очень мал. Такое состояние перехода принято называть закрытым.

Рис.1-4 Обратное включение p-n перехода.

При отсутствии внешнего электрического поля, диффузионный ток равен току проводимости.

Iперехода=Iдиф-Iпров=0.

1. Если приложенное внешнее поле усиливает поле перехода (+к n слою), то Iдиф уменьшится, Iпров увеличивается.

Iперехода= -I0 (обратный ток).

2. Если ослабить поле перехода (+ к р слою), то Iдиф увеличивается, Iпров уменьшится. Iперехода>> I0, Iперехода=Iпр.

Поэтому p-n переход называется полупроводниковым диодом.

Его обозначение в схемах + p - n

Iпр.

Полупроводниковые приборы, состоящие из одного р-n перехода и предназначены для выпрямления переменного тока, называют выпрямительными диодами. В таких диодах используется основное свойство перехода - способность хорошо проводить ток только в одном направлении.

Характеристики полупроводникового диода

Рис 1-5 Прямая и обратная ветви характеристики диода

Основные параметры выпрямительного диода: максимальное значение выпрямленного тока Iвыпр, прямое падение напряжения на переходе при максимальном выпрямленном токе Uпр, максимально допустимое обратное напряжение Uo6p, величина обратного тока Iо при Uo6p. Обычно Iвыпр = 10 мА - 10 А; Unp = 0,2 - 1,5 В; Uo6p = 10 В – 1кВ Iо = 1 мкА - 100 мкА.

Если в выпрямительном диоде обратное напряжение превысит напряжение пробоя Uпроб (обычно Uo6p = 0,8Uпроб), ток резко возрастет и диод выйдет из строя, что объясняется увеличением числа носителей в области перехода под действием ударной ионизации в сильном электрическом поле и последующей усиленной термогенерацией разогревшегося перехода.

Маркировка (обозначение) диодов

В обозначении диода используют буквы и цифры:

Г (или 1) – германиевый диод; К (или 2) – кремниевый диод.

Дальше идут цифры:101-399 –выпрямительные диоды; 401-499 – универсальные диоды.

Рис 1-6 Внешний вид полупроводниковых диодов