Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Biokhimia_1-18.doc
Скачиваний:
89
Добавлен:
25.03.2015
Размер:
629.76 Кб
Скачать

7.Кинетика ферментативных реакций.

Любая химическая реакция характеризуется константой термодинамического равновесия Kр. В реакции:

Константа равновесия:

где [A], [B], [C], и [D] — концентрации действующих

веществ;

k+1 — константа скорости прямой реакции;

k–1 — константа скорости обратной реакции.

Величина, обратная константе равновесия, — константа диссоциации фермент-субстратного комплекса Кs. (в формуле наоборот все, в конце – к+1/к-1)

Чем ниже Кs, тем выше сродство фермента к субстрату. Скорость реакции в этом случае целиком определяется концентрацией фермента. Общая теория ферментативной кинетики предполагает, что если ферментативный процесс протекает в виде реакции:

где E — фермент;

S — субстрат;

P — продукт реакции,

то количественное соотношение между концентрацией субстрата и скоростью ферментативной реакции выражается уравнением: (в начале стоит v=)

где ν — наблюдаемая скорость реакции при данной концентрации субстрата [S];

Ks — константа диссоциации фермент-субстратного комплекса;

Vmax — максимальная скорость реакции при полном насыщении фермента субстратом.

Основные свойства ферментов, активирование и ингибирование ферментов

Активаторы — вещества органической и неорганической природы, повышающие скорость реакции. Соляная кислота повышает активности пепсина желудочного сока, желчные кислоты активируют липазу панкреатического сока и т. д. Наиболее часто активаторами являются ионы металлов.

Ингибиторы — вещества, вызывающие частичное или полное торможение ферментативных реакций. Они подразделяются на обратимые и необратимые.

Антиферменты — белки, действующие как ингибиторы ферментов. Неспецифическое ингибирование ферментов происходит под действием любых денатурирующих агентов.

Факторы влияющие на скорость:

Мерой скорости ферментативных реакций служит количество субстрата, подвергшегося превращению в единицу времени, или количество образовавшегося продукта.

Скорость определяют по углу наклона касательной к кривой на начальной стадии реакции. Чем круче наклон, тем больше скорость. Со временем скорость реакции обычно снижается, по большей части в результате снижения концентрации субстрата.

Факторы, влияющие на скорость ферментативных реакций

Для изучения влияния какого-либо фактора на скорость реакции все прочие факторы должны оставаться неизменными и по возможности иметь оптимальное значение. Измерять следует только начальные скорости, как указано выше.

Концентрация фермента

При высокой концентрации субстрата и при постоянстве других факторов, таких, например, как температура и рН, скорость ферментативной реакции пропорциональна концентрации фермента.

Катализ осуществляется всегда в условиях, когда концентрация фермента гораздо ниже концентрации субстрата. Поэтому с возрастанием концентрации фермента растет и скорость ферментативной реакции.

8. Активаторы и ингибиторы.

Активаторы повышают, т.е. активируют каталитич. активность ферментов. В одних случаях активатор вытесняет ингибитор или отщепляет его от фермента. Например, соляная кислота, пепсиноген HCl→ пепсин →ингибитор 1). Отщепляет от пепсиногена ингибитор в рез-те этого неактив. фермент - пепсиноген превращ. в активный фермент - пепсин, эффективно расщепл. белки в составе желудочною сока. Итак, первый механизм это вытеснение ингибитора или отщепление его от фермента. Например, цистеин может активировать ряд ферментов, отщепляя от него соли тяжелых металлов, например серебра 2). Активатор может связываться с субстратом, обеспечивая более эффективное взаимодействие субстрата с активным центром. Такова вероятно роль ионов магния во многих реакциях идущих с участием АТФ. Считают, что магниевая соль АТФ является истинным субстратом для многих ферментов. Отсюда и активирующий эффект магния оказывающий влияние практически на все ферменты катализирующие реакции с использованием АТФ. Эти ферменты называют синтетазы или лиазы. Их достаточно много в наших клетках. 3).Активатор может способствовать присоединению кофактора к апоферменту. Холофермент - сложный белок может работать только когда имеется апофермент и кофактор. Так вот активатор, иногда взаимодействуя апофермента с кофактором затруднено, некоторые активаторы обеспечивают такое взаимодействие, а значит образование активной формы - соединение апофермента с кофактором 4) Активаторы иногда способствуют формированию каталитически активной пространственной структуры фермента. Напр., такое действие оказывают ионы Са на фермент амилазу. Итак, активаторы способствуют формированию каталитически активной пространственной структуры фермента, т.е. меняют ее конформацию до своеобразной нужной пространственной конформации при которой комплементарность между активным центром и связанным субстратом резко увеличивается. Без активатора связывание таким образом естественно крайне затруднено 5) Активация может быть аллостерической, т.е. идти за счет присоединения к аллостерич. центру фермента положит. алостерич. модулятора. Его наз. активатором. Это присоединение сопровожд. изменением конформации не только в месте связывания модулятора с аллостернч. центром, но захватывает конформационная волна и актив. центр, причем изменение актив. центра оказ. благоприятным для эффективности катализа. Отсюда аллостерических модуляторов с активирующим эффектом достаточно много. Это различные нуклеотиды, например НАД, НАДФ. Активаторами аллостерическими может являться фосфорная кислота, АТФ, АДФ и др. Эти основные 5 механизмов являются практически механизмами, расшифровывающими действия активаторов на ферменты. Ингибиторы. Это вещества, снижающие вплоть до полного прекращения каталитическую активность ферментов. Оказ. в качестве ингибиторов могут выступать самые разнообраз. вещ-ва от самых простых (ионы металлов) до высокомолекулярных соединений типа белков. Сущ. различные варианты классификации или подразделение ингибирования.. Наиболее часто принято ингибирование делить на обратимое и необратимое. Необратимое встречается реже. При нем происх. или разрушение пространст. структуры фермента в связи с этим фермент не может восстановить срок первоначал. активность. Разрушение пространств. структуры фермента, например денатурация, естественно что необратимыми например ингибиторами явл. концентр. кислоты, щелочи поскольку они вызывают серьезные денатурации при этом наблюд. необратимое изменение фермента в месте длительного контакта этих веществ с ферментами. Наиболее часта причина это образование недиссоциир. комплекса. Энзим - ингибиторного комплекса. Е + J → ЕJ. Обратное восстановление энзима невозможно. Пример йодацетат. Явл. необратимыми ингибиторами тиоловых ферментов, т.е. ферментов, в актив. центре кот.х в катализе приним. участие сульгидрильные группы. ДФФ диизопропил фторфосфат тоже явл. необрат. ингибитором ферментов активность которых зависит от гидроксильной группы серина - сериновые ферменты Трипсин - расщепляет белки, фосфорилаза - расщепляет гликоген, холиностераза - расщепляет ацетилхолин (медиатор парасимпатической нервной системы. В большинстве своем необратимые ингибиторы являются сильными ядами. Связано с тем, что дезорганизация работы ферментов, происходящих под действием этих ингибиторов, несомненно, сопровождается резким нарушением обмена веществ. При обратимом ингибировании образовавшийся энзим-ингибиторный комплекс нестойкий и поэтому способен диссоциировать на свободный энзим и ингибитор. Е + J →←EJ. Различ. 2 вида обратим. ингибирования 1) Конкурентное 2) Не конкурентное.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]