Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
фффф.docx
Скачиваний:
70
Добавлен:
18.03.2015
Размер:
176.59 Кб
Скачать

24 Какие силы называют консервативными? Дайте определение потенциальной энергии. Как связаны между собой потенциальная энергия и сила поля.

 Силы, работа которых не зависит от пути, по которому двигалось тело, а зависит от начального и конечного положения тела, называются консервативными

Потенциальная энергия  — скалярная физическая величина, характеризующая способность некоего тела (или материальной точки) совершать работу за счет его нахождения в поле действия сил. Другое определение: потенциальная энергия — это функция координат, являющаяся слагаемым в лагранжиане системы, и описывающая взаимодействие элементов системы[1]. Термин «потенциальная энергия» был введен в XIX веке шотландским инженером и физиком Уильямом Ренкином.

Единицей измерения энергии в СИ является Джоуль.

Каждой точке потенциального поля соответствует, с одной стороны, некоторое значение вектора силы , действующей на тело, и, с другой стороны, некоторое значение потенциальной энергии . Следовательно, между силой и потенциальной энергией должна существовать определенная связь.

Для установления этой связи вычислим элементарную работу , совершаемую силами поля при малом перемещении  тела, происходящем вдоль произвольно выбранного направления в пространстве, которое обозначим буквой . Эта работа равна

где - проекция силы  на направление .

Поскольку в данном случае работа совершается за счет запаса потенциальной энергии , она равна убыли потенциальной энергии  на отрезке оси :

Из двух последних выражений получаем

Откуда

Последнее выражение дает среднее значение  на отрезке . Чтобы

получить значение  в точке нужно произвести предельный переход:

Так как  может изменяться не только при перемещении вдоль оси , но также и при перемещениях вдоль других направлений, предел в этой формул представляет робой так называемую частную производную от  по :

Это соотношение справедливо для любого направления в пространстве, в частности и для направлений декартовых координатных осей х, у, z:

Эта формула определяет проекции вектора силы на координатные оси. Если известны эти проекции, оказывается определенным и сам вектор силы:

в математике вектор ,

где а - скалярная функция х, у, z, называется градиентом этого скаляра обозначается символом . Следовательно сила равна градиенту потенциальной энергии, взятого с обратным знаком

25. Какие силы называют квазиупругими? Каков характер движения тела под действием этих сил? Запишите дифференциальное уравнение гармонических незатухающих колебаний и его решение. Выведите формулу для расчета периода.

Название «Квазиупругая сила» связано с тем, что аналогичным свойством обладают силы, возникающие при малых деформациях упругих тел (так называемые силы упругости). Для материальной точки, находящейся под действием Квазиупругая сила, центр О является положением устойчивого равновесия. Выведенная из этого положения точка будет совершать около О линейные гармонические колебания или описывать эллипс (в частности, окружность).

Свободные колебания всегда затухают из-за потерь энергии (трение, сопротивление среды, сопротивление проводников электрического тока и т. п.). Между тем и в технике и в физических опытах крайне нужны незатухающие колебания, периодичность которых сохраняется все время, пока система вообще колеблется. Как получают такие колебания? Мы знаем, что вынужденные колебания, при которых потери энергии восполняются работой периодической внешней силы, являются незатухающими. Но откуда взять внешнюю периодическую силу? Ведь она в свою очередь требует источника каких-то незатухающих колебаний.

Таким образом, колебание пружинного маятника, которое само по себе затухало бы, поддерживается периодическими толчками, обусловленными самим колебанием маятника. При каждом толчке батарея отдает порцию энергии, часть которой идет на подъем груза. Система сама управляет действующей на нее силой и регулирует поступление энергии из источника — батареи. Колебания не затухают именно потому, что за каждый период от батареи отбирается как раз столько энергии, сколько расходуется за то же время на трение и другие потери. Что же касается периода этих незатухающих колебаний, то он практически совпадает с периодом собственных колебаний груза на пружине, т. е. определяется жесткостью пружины и массой груза.

Подобным же образом возникают незатухающие колебания молоточка в электрическом звонке, с той лишь разницей, что в нем периодические толчки создаются отдельным электромагнитом, притягивающим якорек, укрепленный на молоточке. Аналогичным путем можно получить автоколебания со звуковыми частотами, например возбудить

28 Какое явление называют резонансом? При каких колебаниях имеет место это явление? Получите формулу, связывающую резонансную частоту с собственной частотой и коэффициентом затухания колебательной системы. Начертите резонансные кривые для различных значений коэффициента затухания.

Резона́нс (фр. resonance, от лат. resono — откликаюсь) — явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы.

Вынужденные — колебания, протекающие в системе под влиянием внешнего периодического воздействия. Примеры: листья на деревьях, поднятие и опускание руки. При вынужденных колебаниях может возникнуть явление резонанса: резкое возрастание амплитуды колебаний при совпадении собственной частоты осциллятора и частоты внешнего воздействия.

условие, определяющее wрез :

Это равенство выполняется при w=0, ±, у которых только лишь положительное значение имеет физический смысл. Следовательно, резонансная частота

(148.1)

Явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающей силы (частоты вынуждающего переменного напряжения) к частоте, равной или близкой собственной частоте колебательной системы, называется резонансом (соответственно механическим или электрическим). При значение wрез практически совпадает с собственной частотой w0 колебательной системы. Подставляя (148.1) в формулу (147.8), получим

(148.2)