Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Керосин лекция.docx
Скачиваний:
122
Добавлен:
17.03.2015
Размер:
696.42 Кб
Скачать

Топливо т-6

Получают путем глубокого гидрирования прямогонных фракции 195—315 °C, полученных из подходящих нафтеновых нефтей. Используется в сверхзвуковой авиации в основном ВВС РФ.

Топливо т-8в

Представляет собой гидроочищенную фракцию с пределами выкипания 165—280 °C. В случае нафтеновых малосернистых нефтей, допускается использовать прямогонную фракцию без гидроочистки. Используется в сверхзвуковой авиации в основном ВВС РФ.

Самолетное топливо авиационный керосин ТС-1 используется в ракетной технике в качестве углеводородного топлива для реактивных двигателей. Помимо этого керосин ТС-1 находит применение в лакокрасочной промышленности при производстве олиф, жирных алкидов, материалов на их основе.Содержание гидроочищенного компонента ограничивают концентрацией 70 % для предотвращения снижения противоизносных свойств топлива. Наиболее распространенный вид авиакеросина для дозвуковой авиации. По физико-химическим показателям авиационный керосин ТС-1 должен соответствовать требованиям и нормам, указанным в таблице.

Топливо РТ Получают гидроочисткой прямогонных керосиновых фракций с пределами выкипания 135—280 °C. В результате гидроочистки снижается содержание серы и меркаптанов, но также ухудшаются противоизносные свойства и химическая стабильность. Для предотвращения этого в топливо вводят противоизносные и антиокислительные присадки. Топливо РТ полностью соответствует международным нормам, превосходя их по отдельным показателям. Оно имеет хорошие противоизносные свойства, высокую химическую и термоокислительную стабильность, низкое содержание серы и почти полное отсутствие меркаптанов. Топливо может храниться до 10 лет и полностью обеспечивает ресурс работы двигателя.

Технический керосин

Технический керосин используют как сырье для пиролитического получения этилена, пропилена и ароматических углеводороов, в качестве топлива в основном при обжиге стеклянных и фарфоровых изделий, как растворитель при промывке механизмов и деталей. В России нормы на технический керосин задаются ГОСТ 18499-73 «Керосин для технических целей».

Марки технических керосинов:

  • КТ-1;

  • КТ-2.

Характеристики технических керосинов

Осветительный керосин применяют в основном в обычных осветительных и калильных лампах и, кроме того, в качестве топлива в аппаратах для резки металлов и в бытовых нагревательных приборах, как растворитель в произ-вах пленок и лаков, при пропитке кож и промывке деталей в электроремонтных и механических мастерских. В случае использования по главному назначению качество этого керосина определяется преимущественно высотой некоптящего пламени (ВНП), а также температурами вспышки и помутнения (температура выпадения кристаллов твердых углеводородов из керосина; характеризует его работоспособность при сравнит, низкой температуре окружающего воздуха), минимальным содержанием S (керосин должен сгорать без выделения вредных для человека продуктов) и цветом. Высота Некоптящего Пламени определяет способность керосина гореть в стандартной фитильной лампе ровным белым пламенем без нагара и копоти; численные значения этого показателя входят в обозначения марок керосина .

Осветительный керосин получают прямой перегонкой из нефти, богатой метановыми углеводородами. Очищают серной кислотой и щелочью.

В зависимости от высоты некоптящего пламени стандартом установлены четыре марки керосина:

  • «Керосин КО-30»,

  • «Керосин КО-25»,

  • «Керосин КО-22,

  • «Керосин КО-20».

Характеристики осветительного керосина

Нормы характеристик осветительных керосинов в России задаются стандартами ГОСТ 11128-65 «Керосин осветительный из сернистых нефтей» и ГОСТ 4753-68 «Керосин осветительный», по последнему стандарту показатели следующие:

Реактивный двигатель

Реактивный двигатель — двигатель создающий необходимую для движения силу тяги посредством преобразования потенциальной энергии топлива в кинетическую энергию реактивной струи рабочего тела. Для разгона рабочего тела может использоваться как расширение газа, нагретого тем или иным способом до высокой температуры - тепловые реактивные двигатели, так и другие физические принципы, например, ускорение заряженных частиц в электростатическом поле - ионный двигатель.

Реактивный двигатель был изобретен Гансом фон Охайном (Dr. Hans von Ohain), выдающимся немецким инженером-конструкторм и Фрэнком Уиттлом (Sir Frank Whittle). Первый патент на работающий газотурбинный двигатель, был получен в 1930 году Фрэнк Уиттлом. Однако первую рабочую модель собрал именно Охайн.

2 августа 1939 года в небо поднялся первый реактивный самолет – He 178 (Хейнкель 178), снаряженный двигателем HeS 3, разработанный Охайном.

Существует два основных класса реактивных двигателей:

  • Воздушно-реактивные двигатели — тепловые двигатели, которые используют энергию окисления горючего кислородом воздуха, забираемого из атмосферы. Рабочее тело этих двигателей представляет собой смесь продуктов горения с остальными компонентами забранного воздуха.

  • Ракетные двигатели — содержат все компоненты рабочего тела на борту и способны работать в любой среде, в том числе и в безвоздушном пространстве.

Воздушно-реактивный двигатель

Воздушно-реактивный двигатель (ВРД) — реактивный двигатель, развивающий тягу за счёт реактивной струи рабочего тела, истекающего из сопла двигателя. С этой точки зрения ВРД подобен ракетному двигателю, но отличается от последнего тем, что большую часть рабочего тела он забирает из окружающей среды — атмосферы, в том числе и окислитель, необходимый для горения топлива. В качестве окислителя в ВРД используется кислород, содержащийся в воздухе. Если летательный аппарат, оборудованный ракетным двигателем должен транспортировать как горючее, так и окислитель, масса которого больше массы горючего в 2-8 раз. В зависимости от вида горючего, то аппарат, оснащённый воздушно-ракетный двигатель должен иметь на борту только запас горючего. Воздушно-реактивные двигатели используются, как правило, для приведения в движение летательных аппаратов на высотах до 40 км для турбореактивных двигателей, до 55 км для прямоточных и, в теории, до 75 км для гиперзвуковых

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]